How Brain Waves Can Control VR Video Games

Virtual reality is still so new that the best way for us to interact within it is not yet clear. One startup wants you to use your head, literally: it’s tracking brain waves and using the result to control VR video games.

Boston-based startup Neurable is focused on deciphering brain activity to determine a person’s intention, particularly in virtual and augmented reality. The company uses dry electrodes to record brain activity via electroencephalography (EEG); then software analyzes the signal and determines the action that should occur.


You don’t really have to do anything,” says cofounder and CEO Ramses Alcaide, who developed the technology as a graduate student at the University of Michigan. “It’s a subconscious response, which is really cool.”

Neurable, which raised $2 million in venture funding late last year, is still in the early stages: its demo hardware looks like a bunch of electrodes attached to straps that span a user’s head, worn along with an HTC Vive virtual-reality headset. Unlike the headset, Neurable’s contraption is wireless—it sends data to a computer via Bluetooth. The startup expects to offer software tools for game development later this year, and it isn’t planning to build its own hardware; rather, Neurable hopes companies will be making headsets with sensors to support its technology in the next several years.


Nanotechnology Improves Next Generation Of Batteries

In the global race to create more efficient and long-lasting batteries, some are betting on nanotechnology — the use of minuscule parts — as the most likely to yield a breakthrough. Improving batteries’ performance is key to the development and success of many much-hyped technologies, from solar and wind energy to electric cars. They need to hold more energy, last longer, be cheaper and safer. Research into how to achieve that has followed several avenues, from using different materials than the existing lithium-ion batteries to changing the internal structure of batteries using nanoparticles — parts so small they are invisible to the naked eye. Nanotechnology can increase the size and surface of batteries electrodes, the rods inside the batteries that absorb the energy. It does so by effectively making the electrodes sponge-like, so that they can absorb more energy during charging and ultimately increasing the energy storage capacity. Prague-based company HE3DA in Czech Republic has developed such a technology by using the nanotechnology to move from the current flat electrodes to make them three dimensional. With prototypes undergoing successful testing, it hopes to have the battery on the market at the end of this year.

Tesla Model 3

In the future, this will be the mainstream,” said Jan Prochazka, the president. He said it would be targeted at high-intensity industries like automobiles and the energy sector, rather than mobile phones, because that is where it can make the biggest difference through its use of his bigger electrodes.

In combination with an internal cooling system the batteries, which are being tested now, should be safe from overheating or exploding, a major concern with existing technologies. Researchers at the University of Michigan and MIT have likewise focused on nanotechnology to improve the existing lithium-ion technology. Others have sought to use different materials. One of the most promising is lithium oxygen, which theoretically could store five to 10 times the energy of a lithium ion battery, but there have been a number of technical problems that made it inefficient. Batteries based on sodium-ion, aluminium-air and aluminium-graphite are also being explored. There’s even research on a battery powered by urine.


How To Kill Ocular Cancer

Researchers at the University of Michigan Kellogg Eye Center have developed a new nanoparticle that uses a tumor cell’s protective mechanism against itselfshort-circuiting tumor cell metabolism and killing tumor cells.

eye cancer

This image shows the disruption of the tumor cell due to treatment with nanoparticles and visible light

Our work uses a semiconducting nanoparticle with an attached platinum electrode to drive the synthesis of an anti-cancer compound when illuminated by light,” says Howard R. Petty, Ph.D., Professor of Ophthalmology and Visual Sciences and of Microbiology and Immunology. “The nanoparticle mimics the behavior of NADPH oxidase, an enzyme used by immune cells to kill tumor cells and infectious agents. Since tumor cells typically use NADPH to protect themselves from toxins, the more NADPH they synthesize for protection, the faster they die.

In a four-year study conducted on the mouse model in advanced breast cancer metastasis in the eye’s anterior chamber, Dr. Petty and colleagues found that the new nanoparticle not only killed tumor cells in the eye, but also extended the survival of experimental mice bearing 4T1 tumors, a cell line that is extremely difficult to kill. “Previous monotherapies have not extended the lifetimes of mice bearing this type of tumor,” says Dr. Petty. “Our work has shown that we can extend survival of the mice.”

This treatment offers many advantages,” adds Dr. Petty. “The nanoparticle produces about 20 million toxins per hour in each cell. Also, the nanoparticle is activated by light, so it can be turned on and off simply by exposing it to the correct color of visible light.”

This nanotechnology also has the potential to be used for multiple applications in ophthalmology and other disciplines.


Molecules Tell Bone To Repair Itself

Scientists at the University of Michigan have developed a polymer sphere that delivers a molecule to bone wounds that tells cells already at the injury site to repair the damage. Using the polymer sphere to introduce the microRNA molecule into cells elevates the job of existing cells to that of injury repair by instructing the cellshealing and bone-building mechanisms to switch on, said Peter Ma, professor of dentistry and lead researcher on the project. It’s similar to a new supervisor ordering an office cleaning crew to start constructing an addition to the building, he said.

Using existing cells to repair wounds reduces the need to introduce foreign cells — a very difficult therapy because cells have their own personalities, which can result in the host rejecting the foreign cells, or tumors. The microRNA is time-released, which allows for therapy that lasts for up to a month or longer, said Ma, who also has appointments in the College of Engineering.

nano-shells-deliver-molecules-that-tell-bone-to-repair-itselfThe polymer sphere delivers the microRNA into cells already at the wound site, which turns the cells into bone repairing machines

The new technology we have been working on opens doors for new therapies using DNA and RNA in regenerative medicine and boosts the possibility of dealing with other challenging human diseases,” Ma said. It’s typically very difficult for microRNA to breach the fortress of the cell wall, Ma added. The polymer sphere developed by Ma’s lab easily enters the cell and delivers the microRNA. The technology can help grow bone in people with conditions like oral implants, those undergoing bone surgery or joint repair, or people with tooth decay.

Bone repair is especially challenging in patients with healing problems, but Ma’s lab was able to heal bone wounds in osteoporotic mice, he said. Millions of patients worldwide suffer from bone loss and associated functional problems, but growing and regenerating high-quality bone for specific applications is still very difficult with current technology.

The findings have been published in the journal Nature Communications.


Arrhythmia: How To Prevent Heart Attack

A new nanoparticle developed by University of Michigan researchers could be the key to a targeted therapy for cardiac arrhythmia, a condition that causes the heart to beat erratically and can lead to heart attack and stroke. The disease affects more than 4 million Americans and causes more than 750,000 hospitalizations and 130,000 deaths per year in the U.S. alone.

The new treatment uses nanotechnology to precisely target and destroy the cells within the heart that cause cardiac arrhythmia. In studies conducted on rodents and sheep, the U-M team found that the treatment successfully kills the cells that cause cardiac arrhythmia while leaving surrounding cells unharmed. Cardiac arrhythmia is caused by malfunctions in a certain type of heart muscle cell, which normally helps regulate the heartbeat. Today, the disease is usually treated with drugs, which can have serious side effects. It can also be treated with a procedure called cardiac ablation that burns away the malfunctioning cells using a high-powered laser that’s threaded into the heart on a catheter. The laser also damages surrounding cells, which can cause artery damage and other serious problems.

The U-M team, led by Dr. Jérôme Kalifa, a cardiologist and assistant professor of internal medicine, and Raoul Kopelman, Professor of Chemistry, set out to target and destroy the cells with a far more precise technique that uses low-level red light illumination instead of a high-power laser. Widely used today to treat cancer, the technique requires doctors to mark unwanted cells with a chemical that makes them sensitive to low-level red light. The red light then destroys the marked cells while leaving surrounding tissue unharmed.

cardiologyMicroscopy photos show a cardiac myocyte cell (top) and an attached fibroblast cell (bottom) in a rat heart, after the injection of the newly developed nanoparticle. In the second frame, red light has been applied. The red coloring indicates that the myocyte, which causes cardiac arrhythmia, has been killed, while the fibroblast remains unharmed.

The great thing about this treatment is that it’s precise down to the level of individual cells,” Kopelman said. “Drugs spread all over the body and high-power lasers char the tissue in the heart. This treatment is much easier and much safer.”

The findings are detailed in a new study published in the journal Science Translational Medicine.


Distrophy: How To Repair Muscles

A potential way to treat muscular dystrophy directly targets muscle repair instead of the underlying genetic defect that usually leads to the disease. Muscular dystrophies are a group of muscle diseases characterized by skeletal muscle wasting and weakness. Mutations in certain proteins, most commonly the protein dystrophin, cause muscular dystrophy in humans and also in mice. A University of Michigan (U-M) team led by cell biologist Haoxing Xu, discovered that mice missing a critical calcium channel inside the cell, called TRPML1, showed similar muscle defects as those present in muscular dystrophy patients. Though these mice did not have the defect in dystrophin, they still developed muscular dystrophy-like muscle characteristics. When researchers increased the activity of the calcium channel in the muscular dystrophic mice, it improved muscle membrane repair and restored muscle function.

muscles-distrophyMice missing a calcium channel TRPML1 develop muscular dystrophy and muscle damage (damaged muscle cells accumulate red-colored Evan Blue dye).
The hope is that the same calcium channel will work in people with muscular dystrophy,” Xu said. The long-term plan is to develop clinical trials of a drug that would provide the extra activity of TRPML1.

The findings has been published in Nature Medicine. Xiping Cheng, U-M Department of Molecular, is first author on the paper.


Mimic Nature To Build Man-made Molecular Systems

Using molecules of DNA like an architectural scaffold, Arizona State University (ASU) scientists, in collaboration with colleagues at the University of Michigan, have developed a 3-D artificial enzyme cascade that mimics an important biochemical pathway, a major breakthrough for future biomedical and energy applications.

Remaking an artificial enzyme pair in the test tube and having it work outside the cell is a big challenge for DNA nanotechnology. To meet the challenge, they first made a DNA scaffold that looks like several paper towel rolls glued together. Using a computer program, they were able to customize the chemical building blocks of the DNA sequence so that the scaffold would self-assemble. Next, the two enzymes were attached to the ends of the DNA tubes. In the middle of the DNA scaffold, a research team led by ASU professor Hao Yan affixed a single strand of DNA, with the molecule called NAD+ tethered to the end like a ball and string. Yan refers to this as a swinging arm, which is long, flexible and dexterous enough to rock back and forth between the enzymes to carry out a chemical reaction

We look to Nature for inspiration to build man-made molecular systems that mimic the sophisticated nanoscale machineries developed in living biological systems, and we rationally design molecular nanoscaffolds to achieve biomimicry at the molecular level,” Yan said, who holds the Milton Glick Chair in the ASU Department of Chemistry and Biochemistry.
An even loftier and more valuable goal is to engineer highly programmed cascading enzyme pathways on DNA nanostructure platforms with control of input and output sequences. Achieving this goal would not only allow researchers to mimic the elegant enzyme cascades found in nature and attempt to understand their underlying mechanisms of action, but would facilitate the construction of artificial cascades that do not exist in nature,” said Yan.
The findings were published in the journal Nature Nanotechnology.

Bionic Particles To Turn Sunlight Into Fuel

Inspired by fictional cyborgs like Terminator, a team of researchers at the University of Michigan and the University of Pittsburgh has made the first bionic particles from semiconductors and proteins. These particles recreate the heart of the process that allows plants to turn sunlight into fuel.

Human endeavors to transform the energy of sunlight into biofuels using either artificial materials or whole organisms have low efficiency,” said Nicholas Kotov, the Florence B. Cejka Professor of Engineering at the University of Michigan, who led the experiment. A bionic approach could change that. The bionic particles blend the strengths of inorganic materials, which can readily convert light energy to electron energy, with biological molecules whose chemical functions have been highly developed through evolution. The team first designed the particles to combine cadmium telluride, a semiconductor commonly used in solar cells, with cytochrome C, a protein used by plants to transport electrons in photosynthesis. With this combination, the semiconductor can turn a ray from the sun into an electron, and the cytochrome C can pull that electron away for use in chemical reactions that could clean up pollution or produce fuel, for instance. U-M‘s Sharon Glotzer, the Stuart W. Churchill Professor of Chemical Engineering, who led the simulations, compares the self-assembly to the way that the surfaces of living cells form, using attractive forces that are strong at small scales but weaken as the structure grows. Kotov’s group confirmed that the semiconductor particles and proteins naturally assemble into larger particles, roughly 100 nanometers (0.0001 millimeters) in diameter.

We merged biological and inorganic in a way that leverages the attributes of both to get something better than either alone,” Glotzer said. Powered by electrons from the cytochrome C, the enzyme could remove oxygen from nitrate molecules. Like the structures that accomplish photosynthesis in plants, the bionic particles took a beating from handling the energy. Nature constantly renews these working parts in plants, and through self-assembly, the particles may also be able to renew themselves.

Contact Lens To See During Night

The first room-temperature light detector that can sense the full infrared spectrum has the potential to put heat vision technology into a contact lens. Unlike comparable mid- and far-infrared detectors currently on the market, the detector developed by University of Michigan engineering researchers doesn’t need bulky cooling equipment to work. Infrared vision may be best known for spotting people and animals in the dark and heat leaks in houses, but it can also help doctors monitor blood flow, identify chemicals in the environment and allow art historians to see Paul Gauguin’s sketches under layers of paint. Graphene, a single layer of carbon atoms, could sense the whole infrared spectrum — plus visible and ultraviolet light. But until now, it hasn’t been viable for infrared detection because it can’t capture enough light to generate a detectable electrical signal. With one-atom thickness, it only absorbs about 2.3 percent of the light that hits it. If the light can’t produce an electrical signal, graphene can’t be used as a sensor.
To overcome that hurdle, Zhong and Ted Norris, the Gerard A. Mourou Professor of Electrical Engineering and Computer Science, worked with graduate students to design a new way of generating the electrical signal.

We can make the entire design super-thin,” said Zhaohui Zhong, assistant professor of electrical and computer engineering. “It can be stacked on a contact lens or integrated with a cell phone.
The challenge for the current generation of graphene-based detectors is that their sensitivity is typically very poor.”It’s a hundred to a thousand times lower than what a commercial device would require.” “Our work pioneered a new way to detect light“. “We envision that people will be able to adopt this same mechanism in other material and device platforms” Zhong said.

The device is already smaller than a pinky nail and is easily scaled down. Zhong suggests arrays of them as infrared cameras.


An Invisible Scalpel Made Of Sounds

University of Michigan engineering researchers have developed a new therapeutic ultrasound approach say it could lead to an invisible knife for noninvasive surgery.They designed a carbon-nanotube-coated lens that converts light to sound and can focus high-pressure sound waves to finer points than ever before.
Today’s ultrasound technology enables far more than glimpses into the womb. Doctors routinely use focused sound waves to blast apart kidney stones and prostate tumors, for example. The tools work primarily by focusing sound waves tightly enough to generate heat, says Jay Guo, a professor of electrical engineering and computer science, mechanical engineering, and macromolecular science and engineering. Guo is a co-author of a paper on the new technique published in the current issue of Nature‘s journal Scientific Reports.

The beams that today’s technology produces can be unwieldy, says Hyoung Won Baac, a research fellow at Harvard Medical School who worked on this project as a doctoral student in Guo’s lab.
A major drawback of current strongly focused ultrasound technology is a bulky focal spot, which is on the order of several millimeters,” Baac said. “A few centimeters is typical. Therefore, it can be difficult to treat tissue objects in a high-precision manner, for targeting delicate vasculature, thin tissue layer and cellular texture. We can enhance the focal accuracy 100-fold.”


How To Capture Circulating Cancer Cells?

A glass plate with a nanoscale roughness could be a simple way for scientists to capture and study the circulating tumor cells that carry cancer around the body through the bloodstream. Engineering and medical researchers at the University of Michigan have devised such a set-up, which they say takes advantage of cancer cells‘ stronger drive to settle and bind compared with normal blood cells.

This false-color microscopic image shows cancer cells selectively adhering to patterned nanorough letters (UM) on a glass surface

Circulating tumor cells are believed to contribute to cancer metastasis, the grim process of the disease spreading from its original site to distant tissues. Blood tests that count these cells can help doctors predict how long a patient with widespread cancer will live. “Our system can capture the majority of circulating tumor cells regardless of their surface proteins or their physical sizes, and this could include cancer progenitor or initiating cells,” said Jianping Fu, assistant professor of mechanical engineering and biomedical engineering and a senior author of a paper on the technique published online in ACS Nano.

Hazard of Nano-Engineered Products

Zinc oxide would be the perfect sunscreen ingredient if the product didn't look quite so silly. Thick, white and pasty, it was once seen mostly on lifeguards, surfers and others who needed serious protection. But when sunscreens are made with nanoparticles, the tiniest substances that humans can engineer, they turn clear — which makes them more user-friendly.Sunscreen is just one of the many uses of nanotechnology, which drastically shrinks and fundamentally changes the structure of chemical compounds, but products made with nanomaterials also raise largely unanswered safety questions — such as whether the particles that make them effective can be absorbed into the bloodstream and are toxic to living cells.

We haven't characterized these materials very well yet in terms of what the potential impacts on living organisms could be,” said Kathleen Eggleson, a research scientist at the Center for Nanoscience and Technology at the University of Notre Dame.Scientists don't yet know how long nanoparticles stay in the human body or what they might do there. Animal research has found that inhaled nanoparticles can reach all areas of the respiratory tract; because of their small size and shape, they can migrate quickly into cells and organs.The smaller particles may pose risks to the heart and blood vessels, .Still unknown is “how significant (potential damage) would be, how much nanomaterial would be needed to cause appreciable harm, and how well the body would be able to deal with the material and recover,” said Andrew Maynard, director of the University of Michigan Risk Science Center.