Universal Vaccine Against Influenza A Viruses

Researchers have developed a universal vaccine to combat influenza A viruses that produces long-lasting immunity in mice and protects them against the limitations of seasonal flu vaccines, according to a study led by Georgia State UniversityInfluenza, a contagious respiratory illness that infects the nose, throat and lungs, is among the leading causes of death in the United States, according to the Centers for Disease Control and Prevention (CDC). The CDC estimates influenza has resulted in between 12,000 and 56,000 deaths annually in the U.S. since 2010. Seasonal flu vaccines must be updated each year to match the influenza viruses that are predicted to be most common during the upcoming flu season, but protection doesn’t always meet expectations or new viruses emerge and manufacturers incorrectly guess which viruses will end up spreading. In 2009, the H1N1 pandemic caused 200,000 deaths during the first 12 months, and low vaccine effectiveness was also observed during the 2014-15 and 2016-17 flu seasons. A universal flu vaccine that offers broad protection against various viruses is urgently needed and would eliminate the limitations of seasonal flu vaccines.

Seasonal flu vaccines provide protective immunity against influenza viruses by targeting the exterior head of the virus’s surface protein, which is hem
agglutinin
(HA). The influenza virus trains the body to produce antibodies against inactivated virus particles containing the head of this protein, ideally preventing the head from attaching to receptors and stopping infection. However, the head is highly variable and is different for each virus, creating a need for better vaccines. This study uses a new approach and instead targets the inside portion of the HA protein known as the stalk, which is more conservative and offers the opportunity for universal protection.

In this study, the researchers found vaccinating mice with double-layered protein nanoparticles that target the stalk of this protein produces long-lasting immunity and fully protects them against various influenza A viruses. The findings are published in the journal Nature Communications.

Source: http://news.gsu.edu/

Hand-Held Breath Monitor To Detect Flu

Perena Gouma, a professor in the Materials Science and Engineering Department at The University of Texas at Arlington, has devised a hand-held breath monitor that can detect the flu virus. The single-exhale sensing device is similar to the breathalyzers used by police officers when they suspect a driver of being under the influence of alcohol. A patient simply exhales into the device, which uses semiconductor sensors like those in a household carbon monoxide detector.  The difference is that these sensors are specific to the gas detected, yet still inexpensive, and can isolate biomarkers associated with the flu virus and indicate whether or not the patient has the flu. The device could eventually be available in drugstores so that people can be diagnosed earlier and take advantage of medicine used to treat the flu in its earliest stages. This device may help prevent flu epidemics from spreading, protecting both individuals as well as the public health.

Gouma and her team relied on existing medical literature to determine the quantities of known biomarkers present in a person’s breath when afflicted with a particular disease, then applied that knowledge to find a combination of sensors for those biomarkers that is accurate for detecting the flu. For instance, people who suffer from asthma have increased nitric oxide concentration in their breath, and acetone is a known biomarker for diabetes and metabolic processes. When combined with a nitric oxide and an ammonia sensor, Gouma found that the breath monitor may detect the flu virus, possibly as well as tests done in a doctor’s office. Gouma’s sensors are at the heart of her breath analyzer device.

breath monitor prototype

I think that technology like this is going to revolutionize personalized diagnostics. This will allow people to be proactive and catch illnesses early, and the technology can easily be used to detect other diseases, such as Ebola virus disease, simply by changing the sensors,” said Gouma, who also is the lead scientist in the Institute for Predictive Performance Measurement at the UTA Research Institute.
Before we applied nanotechnology to create this device, the only way to detect biomarkers in a person’s breath was through very expensive, highly-technical equipment in a lab, operated by skilled personnel. Now, this technology could be used by ordinary people to quickly and accurately diagnose illness.”

The findings are described  in the journal Sensors Source.

https://www.uta.edu/

How To Prevent Alzheimer’s

Researchers from Imperial College London (ICL) have prevented the development of Alzheimer’s disease in mice by using a virus to deliver a specific gene into the brain. The early-stage findings by scientists open avenues for potential new treatments for the disease. In the study, published in the journal Proceedings of the National Academy of Sciences, the team used a type of modified virus to deliver a gene to brain cells.

Previous studies by the same team suggest this gene, called PGC1 – alpha, may prevent the formation of a protein called amyloid-beta peptide in cells in the lab. Amyloid-beta peptide is the main component of amyloid plaques, the sticky clumps of protein found in the brains of people with Alzheimer’s disease. These plaques are thought to trigger the death of brain cellsAlzheimer’s disease affects around 520,000 people in the UK. Symptoms include memory loss, confusion, and change in mood or personality. Worldwide 47.5 million people are affected by dementia – of which Alzheimer’s is the most common form. There is no cure, although current drugs can help treat the symptoms of the disease.

Dr Magdalena Sastre, senior author of the research from the Department of Medicine at Imperial, hopes the new findings may one day provide a method of preventing the disease, or halting it in the early stages.

alzheimer_s_disease_vs_normal-spl

She explained: “Although these findings are very early they suggest this gene therapy may have potential therapeutic use for patients. There are many hurdles to overcome, and at the moment the only way to deliver the gene is via an injection directly into the brain. However this proof of concept study shows this approach warrants further investigation.”

The modified virus used in the experiments was called a lentivirus vector, and is commonly used in gene therapy explained Professor Nicholas Mazarakis, co-author of the study from the Department of Medicine: “Scientists harness the way lentivirus infects cells to produce a modified version of the virus, that delivers genes into specific cells. It is being used in experiments to treat a range of conditions from arthritis to cancer. We have previously successfully used the lentivirus vector in clinical trials to deliver genes into the brains of Parkinson’s disease patients.

Source: http://www3.imperial.ac.uk/

Vaccine Against Herpes, Potentially HIV

An effective vaccine against the virus that causes genital herpes has evaded researchers for decades. But now, researchers from the University of Illinois at Chicago (UIC) working with scientists from the Kiel University (Germany) have shown that zinc-oxide nanoparticles shaped like jacks can prevent the virus from entering cells, and help natural immunity to develop.

zinc oxyde tetrapod

We call the virus-trapping nanoparticle a microbivac, because it possesses both microbicidal and vaccine-like properties,” says corresponding author Deepak Shukla, professor of ophthalmology and microbiology & immunology in the UIC College of Medicine. “It is a totally novel approach to developing a vaccine against herpes, and it could potentially also work for HIV and other viruses,” he said. The particles could serve as a powerful active ingredient in a topically-applied vaginal cream that provides immediate protection against herpes virus infection while simultaneously helping stimulate immunity to the virus for long-term protection, explained Shukla. Herpes simplex virus-2, which causes serious eye infections in newborns and immunocompromised patients as well as genital herpes, is one of the most common human viruses.

According to the Centers for Disease Control and Prevention, about 15 percent of people from ages 14-49 carry HSV-2, which can hide out for long periods of time in the nervous system. The genital lesions caused by the virus increase the risk for acquiring human immunodeficiency virus, or HIV. “Your chances of getting HIV are three to four times higher if you already have genital herpes, which is a very strong motivation for developing new ways of preventing herpes infection,” Shukla said. Treatments for HSV-2 include daily topical medications to suppress the virus and shorten the duration of outbreaks, when the virus is active and genital lesions are present. However, drug resistance is common, and little protection is provided against further infections. Efforts to develop a vaccine have been unsuccessful because the virus does not spend much time in the bloodstream, where most traditional vaccines do their work.
The tetrapod-shaped zinc-oxide nanoparticles, called ZOTEN, have negatively charged surfaces that attract the HSV-2 virus, which has positively charged proteins on its outer envelope. ZOTEN nanoparticles were synthesized using technology developed by material scientists at Germany’s Kiel University and protected under a joint patent with UIC. When bound to the nanoparticles, HSV-2 cannot infect cells.

Results of the study are published in The Journal of Immunology.

Source: https://news.uic.edu/

Nano Biosensor Detects Rapidly Flu Virus At Low Cost

The Department of Applied Physics (AP) and Interdisciplinary Division of Biomedical Engineering (BME) of The Hong Kong Polytechnic University (PolyU) have jointly developed a novel nano biosensor for rapid detection of flu and other viruses. PolyU‘s new invention utilizes an optical method called upconversion luminescence resonance energy transfer (LRET) process for ultrasensitive virus detection. It involves simple operational procedures, significantly reducing its testing duration from around 1-3 days to 2-3 hours, making it more than 10 times quicker than traditional clinical methods. Its cost is around HK$20 per sample, which is 80% lower than traditional testing methods. The technology can be widely used for the detection of different types of viruses, shedding new light on the development of low-cost, rapid and ultrasensitive detection of different viruses.

flu virusTraditional biological methods for flu virus detection include genetic analysis — reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) used in immunology. However, RT-PCR is expensive and time-consuming while the sensitivity for ELISA is relatively low. Such limitations make them difficult for clinical use as a front-line and on-site diagnostic tool for virus detection, paving the way for PolyU‘s development of the new upconversion nanoparticle biosensor which utilizes luminescent technique in virus detection.

PolyU‘s researchers have developed a biosensor based on luminescent technique which operates like two matching pieces of magnet with attraction force. It involves the development of upconversion nanoparticles (UCNPs) conjugated with a probe oligo whose DNA base pairs are complementary with that of the gold nanoparticles (AuNPs) flu virus oligo.

The related results have been recently published in ACS Nano and Small, specialized journals in nano material research.

Source: http://www.polyu.edu.hk/

Red Light To Attack Viruses

Light is helping Rice University scientists control both the infectivity of viruses and gene delivery to the nuclei of target cells. The researchers have developed a method to use two shades of red to control the level and spatial distribution of gene expression in cells via an engineered virus.

Although viruses have evolved to deliver genes into host cells, they still face difficulties getting their payloads from the cytoplasm into a cell’s nucleus, where gene expression occurs. The Rice labs of bioengineers Junghae Suh and Jeffrey Tabor have successfully found a way to overcome this critical hurdle. The result from labs at Rice’s BioScience Research Collaborative combines Suh’s interest in designing viruses to deliver genes to target cells with Tabor’s skills in optogenetics, in which light-responsive proteins can be used to control biological behavior. They built custom adeno-associated virus (AAV) vectors by incorporating proteins that naturally come together when exposed to red light (650-nanometer wavelengths) and break apart when exposed to far red (750-nanometer wavelengths). These naturally light-responsive proteins help the viral capsids – the hard shells that contain genetic payloadsenter the host cell nuclei.

red light against virusesViruses in general are relatively efficient at delivering genes into cells, but they still experience great limiting barriers,” she said. “If you add these viruses to cells, most of them seem to hang out outside of the nucleus, and only a small fraction make their way inside, which is the goal,” said Junghae Suh.

The team drew upon the Tabor lab’s expertise in optogenetics to increase the AAVs’ efficiency. “Jeff works with many different types of light-responsive proteins. The particular pair we decided upon was first identified in plants. Light is really nice because you can apply it externally and you can control many aspects: at what areas the light is exposed, the duration of exposure, the intensity of the light and, of course, its wavelength,” she added.

Source: http://news.rice.edu/

Ultrasensitive Biosensor Detects Cancer Very Early

Two young researchers working at the MIPT Laboratory of Nanooptics and Plasmonics (Russia), Dmitry Fedyanin and Yury Stebunov, have developed an ultracompact highly sensitive nanomechanical sensor for analyzing the chemical composition of substances and detecting biological objects, such as viral disease markers, which appear when the immune system responds to incurable or hard-to-cure diseases, including HIV, hepatitis, herpes, and many others. The sensor will enable doctors to identify tumor markers, whose presence in the body signals the emergence and growth of cancerous tumors.

The sensitivity of the new device is best characterized by one key feature: according to its developers, the sensor can track changes of just a few kilodaltons  in the mass of a cantilever in real time. One Dalton is roughly the mass of a proton or neutron, and several thousand Daltons are the mass of individual proteins and DNA molecules. So the new optical sensor will allow for diagnosing diseases long before they can be detected by any other method, which will pave the way for a new-generation of diagnostics.

biosensor

We’ve been following the progress made in the development of micro- and nanomechanical biosensors for quite a while now and can say that no one has been able to introduce a simple and scalable technology for parallel monitoring that would be ready to use outside a laboratory. So our goal was not only to achieve the high sensitivity of the sensor and make it compact, but also make it scalabile and compatibile with standard microelectronics technologies,” the researchers said.

Unlike similar devices, the new sensor has no complex junctions and can be produced through a standard CMOS process technology used in microelectronics. The sensor doesn’t have a single circuit, and its design is very simple. It consists of two parts: a photonic (or plasmonic) nanowave guide to control the optical signal, and a cantilever hanging over the waveguide.

The device, described in an article published in the journal Scientific Reports, is an optical or, more precisely, optomechanical chip.

Source: https://mipt.ru/

Nano-Fibers Prevent HIV/AIDS Transmission

Scientists have developed a novel topical microbicide loaded with hyaluronic acid (HA) nanofibers that could potentially prevent transmission of the human immunodeficiency virus (HIV) through the vaginal mucosa. This research is being presented at the 2014 American Association of Pharmaceutical Scientists (AAPS) Annual Meeting and Exposition, the world’s largest pharmaceutical sciences meeting, in San Diego, Nov. 2-6. HIV is an infectious virus that attacks T lymphocytes, a type of white blood cell that prevents infections and disease. Over time, HIV dramatically depletes the body’s T cell population, leaving the body defenseless against opportunistic pathogens. HIV is transmitted through direct contact with blood, semen, pre-seminal fluid, vaginal fluids, rectal fluids, or breast milk from an infected person. To date, there is no functional cure for HIV infection/AIDS. Currently available anti-HIV drug delivery methods are formulated as gels and suppositories, but can lack appropriate vaginal retention, are prone to medicine leakage, and may cause uncomfortable wetness.
To address these issues, Bi-Botti Youan, Ph.D and his colleagues from University of Missouri-Kansas City School of Pharmacy developed an anti-HIV drug loaded onto a mucoadhesive hyaluronic acid (HA) nanofiber delivery system.
< nanofibersCarnegieMellon

The success of vaginal drug delivery systems depends on the length of time that the drug-containing formulation remains at the site of administration (ex. vagina, rectum). The mucoadhesive nanofibers developed in this study could be beneficial by causing much less discomfort and reducing the dosing frequency simultaneously due to their prolonged retention at the target site,” said Youan.

The nanofiber-based formulation offers various potential advantages in vaginal drug delivery, including the ability to adapt delivery systems for different medical needs, with no leakage or messiness after their application.
Source:
http://www.eurekalert.org/

Ebola: Drop Of Blood Tested in Fifteen Minutes

The Comissariat à l’Energie Atomique (CEA), France, has developed a rapid diagnostic test for Ebola. The immediate production phase starts with the assistance of the company VEDALAB, European leader in rapid diagnosis. This test has just received the technical validation of the high security Microbiological Laboratory P4 Jean Mérieux (Inserm), the french entity that has in charge studies of the Ebola strain outbreak in West Africa.

test ebolaCEA has developed a rapid test for the diagnosis of Ebola particularly suited to the current health emergency. Called Ebola eZYSCREEN with a similar size than pregnancy tests, the device will be used in the field, without special equipment, from a drop of blood, plasma or urine. He is able to give an answer in less than 15 minutes for any patient with symptoms of the disease.

Current tests based on genetic testing of the virus, are very sensitive, but require dedicated devices, taking 2:15 to 2:30 and should be performed only in the laboratory. The rapid test has the advantage of an initial diagnosis of patients closer to the affected populations. It aims to facilitate the supply chain and decision necessary to guide people on the ground. It would particularly reduce the number of analyzes to be performed in a dedicated laboratory.
Source: http://www.cea.fr/

Viruses Designed To Destroy Breast Cancer Cells

Rice University scientists have designed a tunable virus that works like a safe deposit box. It takes two keys to open it and release its therapeutic cargo. The Rice lab of bioengineer Junghae Suh has developed an adeno-associated virus (AAV) that unlocks only in the presence of two selected proteases, enzymes that cut up other proteins for disposal. Because certain proteases are elevated at tumor sites, the viruses can be designed to target and destroy the cancer cells.

We were looking for other types of biomarkers beyond cellular receptors present at disease sites,” Suh said. “In breast cancer, for example, it’s known the tumor cells oversecrete extracellular proteases, but perhaps more important are the infiltrating immune cells that migrate into the tumor microenvironment and start dumping out a whole bunch of proteases as well.
“So that’s what we’re going after to do targeted delivery. Our basic idea is to create viruses that, in the locked configuration, can’t do anything. They’re inert,
” she said. When programmed AAVs encounter the right protease keys at sites of disease, “these viruses unlock, bind to the cells and deliver payloads that will either kill the cells for cancer therapy or deliver genes that can fix them for other disease applications.”
The work appears online this week in the American Chemical Society journal ACS Nano.
Source: http://news.rice.edu/

Nano Paper-Filters Remove Virus

Researchers at the Division of Nanotechnology and Functional Materials, Uppsala University – Sweden – have developed a paper filter, which can remove virus particles with an efficiency matching that of the best industrial virus filters. The paper filter consists of 100 percent high purity cellulose nanofibers, directly derived from nature.

Virus particles are very peculiar objects- tiny (about thousand times thinner than a human hair) yet mighty. Viruses can only replicate in living cells but once the cells become infected the viruses can turn out to be extremely pathogenic. Viruses can actively cause diseases on their own or even transform healthy cells to malignant tumors.

The illustration shows the nanofibers in white and the virus in green
Viral contamination of biotechnological products is a serious challenge for production of therapeutic proteins and vaccines. Because of the small size, virus removal is a non-trivial task, and, therefore, inexpensive and robust virus removal filters are highly demanded’, says Albert Mihranyan, Associate Professor at the Division of Nanotechnology and Functional Materials, Uppsala University, who heads the study.

The research was carried out in collaboration with virologists from the Swedish University of Agricultural Sciences/Swedish National Veterinary Institute and is published in the Advanced Healthcare Materials journal.
Source: http://www.uu.se/

3D Video Of Virus Entering Cell

Tiny and swift, viruses are hard to capture on video. Now researchers at Princeton University have achieved an unprecedented look at a virus-like particle as it tries to break into and infect a cell. The technique they developed could help scientists learn more about how to deliver drugs via nanoparticles — which are about the same size as viruses — as well as how to prevent viral infection from occurring.


The video reveals a virus-like particle zipping around in a rapid, erratic manner until it encounters a cell, bounces and skids along the surface, and either lifts off again or, in much less time than it takes to blink an eye, slips into the cell’s interior

CLICK HERE TO ENJOY THE VIDEO

The challenge in imaging these events is that viruses and nanoparticles are small and fast, while cells are relatively large and immobile,” said Kevin Welsher, a postdoctoral researcher in Princeton’s Department of Chemistry and first author on the study. “That has made it very hard to capture these interactions.”

The problem can be compared to shooting video of a hummingbird as it roams around a vast garden, said Haw Yang, associate professor of chemistry and Welsher’s adviser. Focus the camera on the fast-moving hummingbird, and the background will be blurred. Focus on the background, and the bird will be blurred.

The researchers solved the problem by using two cameras, one that locked onto the virus-like nanoparticle and followed it faithfully, and another that filmed the cell and surrounding environment.

Putting the two images together yielded a level of detail about the movement of nano-sized particles that has never before been achieved, Yang said.

The work was published in Nature Nanotechnology.
Source: http://blogs.princeton.edu/