Hydrogen Economy Closer

Washington State University (WSU) researchers have found a way to more efficiently generate hydrogen from water — an important key to making clean energy more viable. Using inexpensive nickel and iron, the researchers developed a very simple, five-minute method to create large amounts of a high-quality catalyst required for the chemical reaction to split water.

Energy conversion and storage is a key to the clean energy economy. Because solar and wind sources produce power only intermittently, there is a critical need for ways to store and save the electricity they create. One of the most promising ideas for storing renewable energy is to use the excess electricity generated from renewables to split water into oxygen and hydrogen. Hydrogen has myriad uses in industry and could be used to power hydrogen fuel-cell carsIndustries have not widely used the water splitting process, however, because of the prohibitive cost of the precious metal catalysts that are required – usually platinum or ruthenium. Many of the methods to split water also require too much energy, or the required catalyst materials break down too quickly.

In their work, the researchers, led by professor Yuehe Lin in the School of Mechanical and Materials Engineering, used two abundantly available and cheap metals to create a porous nanofoam that worked better than most catalysts that currently are used, including those made from the precious metals. The catalyst they created looks like a tiny sponge. With its unique atomic structure and many exposed surfaces throughout the material, the nanofoam can catalyze the important reaction with less energy than other catalysts. The catalyst showed very little loss in activity in a 12-hour stability test.

We took a very simple approach that could be used easily in large-scale production,” said Shaofang Fu, a WSU Ph.D. student who synthesized the catalyst and did most of the activity testing. “The advanced materials characterization facility at the national laboratories provided the deep understanding of the composition and structures of the catalysts,” comments Junhua Song, another WSU Ph.D. student who worked on the catalyst characterization.

The findings are described in the journal Nano Energy.

Source: https://news.wsu.edu/

Solar-driven Hydrogen Economy

Hydrogen as a fuel source, rather than hydrocarbons like oil and coal, offers many benefits. Burning hydrogen produces harmless water with the potential to eliminate carbon dioxide emissions and their environmental burden. In pursuit of technologies that could lead to a breakthrough in achieving a hydrogen economy, a key issue is making hydrogen cheaply. Using catalysts to split water is the ideal way to generate hydrogen, but doing so usually requires an energy input from other chemicals, electricity, or a portion of sunlight which has high enough energy.

Now researchers at Osaka University have developed a new catalytic system for efficiently splitting water and making hydrogen with energy from normal sunlight. Their study was recently reported in Angewandte Chemie International Edition.

It has not been possible to use visible light for photocatalysis, but our approach of combining nanostructured black phosphorus for water reduction to hydrogen and bismuth vanadate for water oxidation to oxygen lets us make use of a wide range of the solar spectrum to make hydrogen and oxygen with unprecedented efficiency,” lead author Mingshan Zhu says.

Black phosphorus has a flat, two-dimensional structure similar to that of graphene and strongly absorbs light across the whole of the visible spectrum. The researchers combined the black phosphorus with bismuth vanadate, which is a well-known water oxidation catalyst.

In the same way that plants shuttle electrons between different structures in natural photosynthesis to split water and make oxygen, the two components of this new catalyst could rapidly transfer electrons excited by sunlight. The amounts of the two components was also optimized in the catalyst, leading to production of hydrogen and oxygen gases in an ideal 2:1 ratio.

Source: http://resou.osaka-u.ac.jp/

Efficient, Low-Cost Catalyst To Produce Hydrogen

A nanostructured composite material developed at UC Santa Cruz has shown impressive performance as a catalyst for the electrochemical splitting of water to produce hydrogen. An efficient, low-cost catalyst is essential for realizing the promise of hydrogen as a clean, environmentally friendly fuel.

Researchers led by Shaowei Chen, professor of chemistry and biochemistry at UC Santa Cruz, have been investigating the use of carbon-based nanostructured materials as catalysts for the reaction that generates hydrogen from water. In one recent study, they obtained good results by incorporating ruthenium ions into a sheet-like nanostructure composed of carbon nitride. Performance was further improved by combining the ruthenium-doped carbon nitride with graphene, a sheet-like form of carbon, to form a layered composite.

The bonding chemistry of ruthenium with nitrogen in these nanostructured materials plays a key role in the high catalytic performance,” Chen said. “We also showed that the stability of the catalyst is very good.”

Currently, the most efficient catalysts for the electrochemical reaction that generates hydrogen from water are based on platinum, which is scarce and expensive. Carbon-based materials have shown promise, but their performance has not come close to that of platinum-based catalysts.

In the new composite material developed by Chen’s lab, the ruthenium ions embedded in the carbon nitride nanosheets change the distribution of electrons in the matrix, creating more active sites for the binding of protons to generate hydrogen. Adding graphene to the structure further enhances the redistribution of electrons.

The new findings were published in ChemSusChem.

Source: https://news.ucsc.edu/

‘Internet Of Water’To Manage Floodings in U.S.

The so-called ‘internet of water‘ could be part of the solution to flooding in cities across the United States. University of Michigan researchers are piloting a ‘smart stormwater system in Ann Arbor. The system combines real-time data on how much water is in the system to help regulate water flow.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We have a network of sensors and valves and other data we can pull in, so weather forecasts and we combine all those together to figure out when is a good time to close these valves, when is a good time to open these valves?“, says Brandon Wong, researcher at the University of Michigan.

The team can control the valves remotely using smartphone apps. Eventually this could mean the water released into the wetlands around Ann Arbor being regulated autonomously.

By also having this on the internet, it doesn’t have to be me that controls it, it could be a colleague of mine, it could be the city and it could also just be autonomous“, explains Brandon Wong. With between 10 and 20 valves per square mile of the stormwater system there’s plenty of data to monitor. The team say their smart system helps ageing infrastructure cope with the increased building pressures on green areas.

So what we have done here is making use of the remaining green areas and making them more effective by putting in these valves,” adds Wong. The project won a $1.8 million grant from the National Science Foundation. If successful, it could be rolled out across the United States.

Source: http://www-personal.umich.edu/

AI-controlled Greenhouse Uses 90 Percent Less Water To Produce Salads

Californian startup  Iron Ox runs an indoor farm complete with a few hundred plants—and two robot farmers. Instead of using technology to grow genetically modified food, a former Google engineer partnered with one of his friends who had a PhD in robotics to open a technology-based farm where they plant, seed, and grow heads of lettuce.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Iron Ox’s goal is to provide quality produce to everyone without a premium price. According to Natural Society the average head of lettuce travels 2,055 miles from farm to market, which is why fresh lettuce is often so expensive. Currently, Iron Ox only provides produce to restaurants and grocery stores in the Bay Area of California, which is why after a daily harvest, their products are hours fresh as opposed to shipped in. The company aims to open greenhouses near other major cities, guaranteeing same-day delivery from their trucks at a fraction of the price of the current supply chain.

So why the robots? Lettuce has always been a testing ground for farming innovation, from early greenhouses to closed aquaponic ecosystems. According to Iron Ox, their AI-controlled greenhouse uses 90 percent less water than traditional farms, and because of the technology, each head of lettuce receives intimate individualized attention that is not realistic with human labor. Iron Ox also says that because they grow their products indoors with no pesticides, they don’t have to worry about typical farming issues like stray animals eating their product.

Iron Ox has yet to launch a fully-functioning automated greenhouse, but hope to build their first by the end of 2017. However, Iron Ox is not the only company to experiment with robot farming. Spread, a sustainable farming organization, broke ground on their first techno-farm, which will be fully automated and operated by robots growing lettuce, in May. They have plans to expand to the Middle East next and then continue growing.

Does this mean the future of produce is automation? Not exactly. Agriculture is complex business, and not all produce can be greenhouse-grown as efficiently and effectively as lettuce. But it’s one more reason for farmers to be aware of how the robots are coming for us all.

Source: https://www.saveur.com/

How To Detect Lead In Water

Gitanjali Rao, 11-year-old girl, is “America’s Top Young Scientist” of this year, with her invention of Tethys, a device that detects lead in water.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Tethys, the Greek goddess of fresh water, is a lead detection tool. What you do is first dip a disposable cartridge, which can easily be removed and attached to the core device in the water you wish to test. Once you do that, that’s basically the manual part. Then you just pull out an app on your phone and check your status and it looks like the water in this container is safe. So that’s just very simple, about like a 10 to 15 second process,” says Gitanjali Rao . The young girl was affected by the Flint, Michigan water catastrophe when the city started using the Flint River for water in 2014, sparking a crisis that was linked to an outbreak of Legionnaires’ disease, at least 12 deaths and dangerously high lead levels in children.

I was most affected about Flint, Michigan because of the amount of people that were getting affected by the lead in water. And I also realized that it wasn’t just in Flint, Michigan and there were over 5,000 water systems in the U.S. alone. In the beginning of my final presentation at the event, I talked about a little boy named Opemipo, he’s 10 years old and lives in Flint, Michigan. And he has 1 percent elevated lead levels in his blood. And he’s among the thousands of adults and children exposed to the harmful effects of lead in water. So it’s a pretty big deal out there today,” remembers Rao. The seventh-grader said it took her five months to make Tethys from start to finish.

My first couple of times when I was doing my experimentation and test, I did fail so many times and it was frustrating, but I knew that it was just a learning experience and I could definitely develop my device further by doing even more tests and getting advice from my mentor as well. So, never be afraid to try,” explains Rao, who  won the 2017 Discovery Education 3M Young Scientist Challenge, along with a $25,000 prize.

Source: http://www.reuters.com/

Renewable Fuel From Water

Physicists at Lancaster University (in UK) are developing methods of creating renewable fuel from water using quantum technologyRenewable hydrogen can already be produced by photoelectrolysis where solar power is used to split water molecules into oxygen and hydrogen. But, despite significant research effort over the past four decades, fundamental problems remain before this can be adopted commercially due to inefficiency and lack of cost-effectivenessDr Manus Hayne  from the Department of Physics said: “For research to progress, innovation in both materials development and device design is clearly needed.

The Lancaster study, which formed part of the PhD research of Dr Sam Harrison, and is published in Scientific Reports, provides the basis for further experimental work into the solar production of hydrogen as a renewable fuel. It demonstrates that the novel use of nanostructures could increase the maximum photovoltage generated in a photoelectrochemical cell, increasing the productivity of splitting water molecules.

To the authors’ best knowledge, this system has never been investigated either theoretically or experimentally, and there is huge scope for further work to expand upon the results presented here,” said Dr Haynes. “Fossil-fuel combustion releases carbon dioxide into the atmosphere, causing global climate change, and there is only a finite amount of them available for extraction. We clearly need to transition to a renewable and low-greenhouse-gas energy infrastructure, and renewable hydrogen is expected to play an important role.

Fossil fuels accounted for almost 90% of energy consumption in 2015, with absolute demand still increasing due to a growing global population and increasing industrialisationPhotovoltaic solar cells are currently used to convert sunlight directly into electricity but solar hydrogen has the advantage that it is easily stored, so it can be used as and when needed. Hydrogen is also very flexible, making it highly advantageous  for remote communities. It can be converted to electricity in a fuel cell, or burnt in a boiler or cooker just like natural gas. It can even be used to fuel aircraft.

Source: http://www.lancaster.ac.uk/

How To Convert 90% Of Water Into Hydrogen

Researchers from North Carolina State University (NC State) have significantly boosted the efficiency of two techniques, for splitting water to create hydrogen gas and splitting carbon dioxide (CO2) to create carbon monoxide (CO). The products are valuable feedstock for clean energy and chemical manufacturing applications. The water-splitting process successfully converts 90 percent of water into hydrogen gas, while the CO2-splitting process converts more than 98 percent of the CO2 into CO. In addition, the process also uses the resulting oxygen to convert methane into syngas, which is itself a feedstock used to make fuels and other products.


These advances are made possible by materials that we specifically designed to have the desired thermodynamic properties for each process,” says Fanxing Li, an associate professor of chemical and biomolecular engineering at NC State who is corresponding author of two papers on the work. “These properties had not been reported before unless you used rare earth materials.”

For the CO2-splitting process, researchers developed a nanocomposite of strontium ferrite dispersed in a chemically inert matrix of calcium oxide or manganese oxide. As CO2 is run over a packed bed of particles composed of the nanocomposite, the nanocomposite material splits the CO2 and captures one of the oxygen atoms. This reduces the CO2, leaving only CO behind.

Previous CO2 conversion techniques have not been very efficient, converting well below 90 percent of the CO2 into CO,” Li says. “We reached conversion rates as high as 99 percent. “And CO is valuable because it can be used to make a variety of chemical products, including everything from polymers to acetic acid,” Li adds.

Meanwhile, the oxygen captured during the CO2-splitting process is combined with methane and converted into syngas using solar energy.

Source: https://news.ncsu.edu/

How Yo Make Sea Water Drinkable

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved. New research demonstrates the real-world potential of providing clean drinking water for millions of people who struggle to access adequate clean water sources. Graphene-oxide membranes developed at the National Graphene Institute have already demonstrated the potential of filtering out small nanoparticles, organic molecules, and even large salts. Until now, however, they couldn’t be used for sieving common salts used in desalination technologies, which require even smaller sieves. Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.

The Manchester-based group have now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water. The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology,” says Professor Rahul Raveendran Nair.

The new findings from a group of scientists at The University of Manchester have been published in the journal Nature Nanotechnology.

Source: http://www.manchester.ac.uk/
AND
http://www.reuters.com/

Super-Efficient Production Of Hydrogen From Solar Energy

Hydrogen is an alternative source of energy that can be produced from renewable sources of sunlight and water. A group of Japanese researchers has developed a photocatalyst that increases hydrogen production tenfold.

When light is applied to photocatalysts, electrons and holes are produced on the surface of the catalyst, and hydrogen is obtained when these electrons reduce the hydrogen ions in water. However, in traditional photocatalysts the holes that are produced at the same time as the electrons mostly recombine on the surface of the catalyst and disappear, making it difficult to increase conversion efficiency.

Professor Tachikawa’s research group from the Kobe University developed a photocatalyst made of mesocrystal, deliberately creating a lack of uniformity in size and arrangement of the crystals. This new photocatalyst is able to spatially separate the electrons and electron holes to prevent them recombining. As a result, it has a far more efficient conversion rate for producing hydrogen than conventional nanoparticulate photocatalysts (approximately 7%).

The team developed a new method called “Topotactic Epitaxial Growth” that uses the nanometer-sized spaces in mesocrystals.
Using these findings, the research group plans to apply mesocrystal technology to realizing the super-efficient production of hydrogen from solar energy. The perovskite metal oxides, including strontium titanate, the target of this study, are the fundamental materials of electronic elements, so their results could be applied to a wide range of fields.

The discovery was made by a joint research team led by Associate Professor Tachikawa Takashi (Molecular Photoscience Research Center, Kobe University) and Professor Majima Tetsuro (Institute of Scientific and Industrial Research, Osaka University). Their findings were published  in the online version of Angewandte Chemie International Edition.

Source: http://www.kobe-u.ac.jp/

Wood Mixed With Nanoparticles Filters Toxic Water

Engineers at the University of Maryland have developed a new use for wood: to filter water. Liangbing Hu of the Energy Research Center and his colleagues added nanoparticles to wood, then used it to filter toxic dyes from water.

The team started with a block of linden wood, which they then soaked in palladium – a metal used in cars’ catalytic converters to remove pollutants from the exhaust. In this new filter, the palladium bonds to particles of dye. The wood’s natural channels, that once moved water and nutrients between the leaves and roots, now allow the water to flow past the nanoparticles for efficient removal of the toxic dye particles. The water, tinted with methylene blue, slowly drips through the wood and comes out clear.

VIDEO: Wood filter removes toxic dye from water

This could be used in areas where wastewater contains toxic dye particles,” said Amy Gong, a materials science graduate student, and co-first author of the research paper.

The purpose of the study was to analyze wood via an engineering lens. The researchers did not compare the filter to other types of filters; rather, they wanted to prove that wood can be used to remove impurities.

We are currently working on using a wood filter to remove heavy metals, such as lead and copper, from water,’ said Liangbing Hu, the lead researcher on the project. “We are also interested in scaling up the technology for real industry applications.” Hu is a professor of materials science and a member of the University of Maryland’s Energy Research Center.

Source: http://www.mse.umd.edu/

How To Color Textiles Without Polluting Environment

Fast fashion” might be cheap, but its high environmental cost from dyes polluting the water near factories has been well documented. To help stem the tide of dyes from entering streams and rivers, scientists report in the journal ACS Applied Materials & Interfaces a nonpolluting method to color textiles using 3-D colloidal crystals.

peacock feathers

Peacock feathers, opals and butterfly wings have inspired a new way to color voile fabrics without the pollutants of traditional dyes.

Dyes and pigments are chemical colors that produce their visual effect by selectively absorbing and reflecting specific wavelengths of visible light. Structural or physical colors — such as those of opals, peacock feathers and butterfly wings — result from light-modifying micro- and nanostructures. Bingtao Tang and colleagues from Universty of Maryland wanted to find a way to color voile textiles with structural colors without creating a stream of waste.

The researchers developed a simple, two-step process for transferring 3-D colloidal crystals, a structural color material, to voile fabrics. Their “dye” included polystyrene nanoparticles for color, polyacrylate for mechanical stability, carbon black to enhance color saturation and water. Testing showed the method could produce the full spectrum of colors, which remained bright even after washing. In addition, the team said that the technique did not produce contaminants that could pollute nearby water.

Source: http://pubs.acs.org/