Lenses Provide Nano Scale X-ray Microscopy

Scientists at DESY (Germany) have developed novel lenses that enable X-ray microscopy with record resolution in the nanometre regime. Using new materials, the research team led by DESY scientist Saša Bajt from the Center for Free-Electron Laser Science (CFEL) has perfected the design of specialised X-ray optics and achieved a focus spot size with a diameter of less than ten nanometres. A nanometre is a millionths of a millimetre and is smaller than most virus particles. They successfully used their lenses to image samples of marine plankton.

Modern particle accelerators provide ultra-bright and high-quality X-ray beams. The short wavelength and the penetrating nature of X-rays are ideal for the microscopic investigation of complex materials. However, taking full advantage of these properties requires highly efficient and almost perfect optics in the X-ray regime. Despite extensive efforts worldwide this turned out to be more difficult than expected, and achieving an X-ray microscope that can resolve features smaller than 10 nm is still a big challenge.


The silica shell of the diatom Actinoptychus senarius, measuring only 0.1 mm across, is revealed in fine detail in this X-ray hologram recorded at 5000-fold magnification with the new lenses. The lenses focused an X-ray beam to a spot of approximately eight nanometres diameter – smaller than a single virus – which then expanded to illuminate the diatom and form the hologram

The new lenses consist of over 10 000 alternating layers of a new material combination, tungsten carbide and silicon carbide. “The selection of the right material pair was critical for the success,” emphasises Bajt. “It does not exclude other material combinations but it is definitely the best we know now.” The resolution of the new lenses is about five times better than achievable with typical state-of-the-art lenses.

We produced the world’s smallest X-ray focus using high efficiency lenses,” says Bajt. The new lenses have an efficiency of more than 80 per cent. This high efficiency is achieved with the layered structures that make up the lens and which act like an artificial crystal to diffract X-rays in a controlled way.

The researchers have reported their work in the journal Light: Science and Applications.

Source: http://www.desy.de/

How To See Internal Structure Of Objects

University of Manchester researchers, working with colleagues in the UK, Europe and the US, designed a novel imaging technique that could have a wide range of applications across many disciplines, such as materials science, geology, environmental science and medical research.

x-ray vision

This new imaging method – termed Pair Distribution Function-Computed Tomography – represents one of the most significant developments in X-ray micro tomography for almost 30 years,” said Professor Robert Cernik in Manchester’s School of Materials.”
Using this method we are able to image objects in a non-invasive manner to reveal their physical and chemical nano-properties and relate these to their distribution in three-dimensional space at the micron scale.
“Such relationships are key to understanding the properties of materials and so could be used to look at in-situ chemical reactions, probe stress-strain gradients in manufactured components, distinguish between healthy and diseased tissue, identify minerals and oil-bearing rocks or identify illicit substances or contraband in luggage.

Source: http://www.manchester.ac.uk/

How to Draw Superior Images of Nanoparticles

A new x-ray imaging technique yields unprecedented measurements of nanoscale structures. Now, owing to a happy accident and subsequent insight, researchers at the US Department of Energy’s (DOE) Brookhaven National Laboratory have developed a new and strikingly simple x-ray scattering technique—detailed in the February issue of the Journal of Applied Crystallography—to help draw nanomaterials ranging from catalysts to proteins into greater focus.
x-ray beamThis rendering shows the high-intensity x-ray beam striking and then traveling through the gray sample material. In this new technique, the x-ray scattering—the blue and white ripples—is considerably less distorted than in other methods, producing superior images with less complex analysis.During an experiment, we noticed that one of the samples was misaligned,” said physicist Kevin Yager, a coauthor on the new study. “Our x-ray beam was hitting the edge, not the center as is typically desired. But when we saw how clean and undistorted the data was, we immediately realized that this could be a huge advantage in measuring nanostructures.

Source: http://www.bnl.gov/

How To Prevent Bone Fractures

Using cutting-edge X-ray techniques, Cornell researchers have uncovered cellular-level detail of what happens when bone bears repetitive stress over time, visualizing damage at smaller scales than previously observed. Their work could offer clues into how bone fractures could be prevented. More: from athletes to individuals suffering from osteoporosis, bone fractures are usually the result of tiny cracks accumulating over time — invisible rivulets of damage that, when coalesced, lead to that painful break.
Marjolein van der Meulen, the Swanson Professor of Biomedical Engineering in the Sibley School of Mechanical and Aerospace Engineering, led the study published online March 5 in PLOS One using transmission X-ray microscopy at the Stanford Synchrotron Radiation Lightsource, part of the SLAC National Accelerator Laboratory.
Transmission X-ray microscope images of damage generated in a bone sample and stained with lead-uranyl acetate. White is the staining of microdamage, gray is bone and black is background. On the left is one-time loading of the sample, and on the right is repeated loading.

In skeletal research, people have been trying to understand the role of damage,” said van der Meulen, whose research is called mechanobiology — how mechanics intersects with biological processes. “One of the things people have hypothesized is that damage is one of the stimuli that cells are sensing.”

Source: http://www.news.cornell.edu/

How To Diagnose Lung Diseases at Early Stage

Severe lung diseases are among the leading causes of death worldwide. To date they have been difficult to diagnose at an early stage. Within an international collaboration scientists from Munich- Germany – now developed an X-ray technology to do just that. Now they are working on bringing the procedure into medical practice.
X-Ray Nanotechnology.
A combination of dark-field and conventional transmission information allows for a clear distinction of healthy versus emphysematous tissue and an assessment of the regional distribution of the disease. From such images, a doctor might in future not only see if a patient is diseased but also which parts of the lung are affected and how much.
Especially in early stages of the disease, identification, precise quantification and localization of emphysema through the new technology would be very helpful”, says Professor Maximilian Reiser, head of the Institute for Clinical Radiology at Ludwig-Maximilians-University Munich.

Source: http://www.munich-photonics.de