Category Archives: Uncategorized

Battery-free Pacemakers Powered By A Patient’s Heartbeat

A new device powered by the heart could finally solve the pacemaker problem. Some 1.5 million Americans have pacemakers implanted to keep their hearts beating steadily. The devices are life-saving, but they don’t last forever. Currently, most pacemaker batteries have to be replaced every five to 12 years, and doing so means invasive surgery each time. Researchers at the National Key Laboratory for Science and Technology in Shanghai, China have developed a tiny device that piggybacks off the heart itself to generate energy – meaning a pacemaker battery would never have to be replaced.

A healthy heart can keep time for itself, by way of an internal pacemaker called the sinus node in the upper right chamber. It fires off an electrical charge some 60 to 100 times a minute, and that electrical energy sets off a series of contractions of heart muscle which in turn pumps blood throughout the body. But as the heart ages or once it becomes diseased, the sinus node takes a hit, too, and may fail to keep the heart beating in time or at all. Fortunately, since the late 1950s, we’ve been able to substitute a small, implantable, battery-powered device to send these electrical signals once the heart can’t any more. Even 60 years later, however, we haven’t figured out what to do about the device’s power supply, however.

Surgery to place the pacemaker and wires that feed its electrical pulses to the heart is complex, requiring doctors to open the chest cavity. The pacemaker itself is tucked away in a ‘pocket’ much closer to the skin surface. Once the battery runs out, usually only a local anesthetic is required to remove the old device and put a new, fully charged one.  Still, the procedure is an unpleasant hassle that comes with a risk of infection, and it’s expensive to have done. Depending on the pacemaker, the device itself may cost anywhere from $19,000 to $96,000, according to Costhelper – and that doesn’t include the expenses for the operation.

But the new Chinese-developed device shows promise to end the procedure.  The new pacemaker accessory can actually harness the heart’s beats to power a pacemaker. The key to innovation is its flexible plastic frame, which allows the device to capture more energy from the heart than previous hard cases have done. At the device’s center are layers of piezoelectric material, which generates power whenever it is bent. Many materials acquire an electrical charge when force is applied to them, including natural ones in our bodies. Crystals, DNA and even bone are capable of capturing electrical energy. The trick is to apply enough force to a piezoelectric material, then supercharge it, because, on their own, these materials don’t work up all that much energy.

Scientists have long been looking to piezoelectricity as an elegant solution to recapturing otherwise wasted energy, and some have even applied it to the pacemaker before. But, previously, other researchers have not been able to create a device that bends enough to generate sufficient power. Now, the Chinese scientists have shown their device can fuel a pacemaker and keep a pig’s heart beating. The devices frame allows it to flex significantly with as little movement as is created by a heartbeat. While the pacemaker itself is implanted in its usual place, near the collar bone and just under the skin, the new power device is tucked underneath the heart, where the organ’s contractions bend it rhythmically.  In tests in pigs, the new pacemaker generated just as much power as a pacemaker, using a completely renewable energy source.

Source: http://pubs.acs.org/
AND
https://www.dailymail.co.uk/

2-D nanoparticles boost Cartilage Regeneration

Researchers have developed a new way to deliver treatment for cartilage regeneration. The nanoclay-based platform for sustained and prolonged delivery of protein therapeutics could improve the treatment of osteoarthritis, a degenerative disease that affects nearly 27 million Americans, according to Akhilesh K. Gaharwar, assistant professor in the Department of Biomedical Engineering at the Texas University  A&MOsteoarthritis is caused by breakdown of cartilage that can lead to damage of the underlying bone. As America’s population ages, osteoarthritis incidences are likely to increase. One of the greatest challenges with treating osteoarthritis and subsequent joint damage is repairing the damaged tissue, especially as cartilage tissue is difficult to regenerate.

One method for repair or regeneration of damaged cartilage tissue is to deliver therapeutic growth factors, a special class of proteins that can aid in tissue repair and regeneration. However, current versions of growth factors break down quickly and require a high dose to achieve a therapeutic potential. Recent clinical studies have demonstrated significant adverse effects to this kind of treatment, including uncontrolled tissue formation and inflammation.

In the study, published in ACS Applied Materials and Interfaces, Gaharwar’s lab designed two-dimensional mineral nanoparticles to deliver growth factors for a prolonged duration to overcome this drawback. These nanoparticles provide a high surface area and dual charged characteristics that allow for easy electrostatic attachment of growth factors.

These nanoparticles could prolong delivery of growth factors to human mesenchymal stem cells, which are commonly utilized in cartilage regeneration,” Gaharwar said. “The sustained delivery of growth factors resulted in enhanced stem cell differentiation towards cartilage lineage and can be used for treatment of osteoarthritis.”

Source: https://research.tamu.edu/

This Person Does Not exist

With the help of artificial intelligence, you can manipulate video of public figures to say whatever you like — or now, create images of people’s faces that don’t even exist. You can see this in action on a website called thispersondoesnotexist.com. It uses an algorithm to spit out a single image of a person’s face, and for the most part, they look frighteningly realHit refresh in your browser, and the algorithm will generate a new face. Again, these people do not exist.

The website is the creation of software engineer Phillip Wang, and uses a new AI algorithm called StyleGAN, which was developed by researchers at NvidiaGAN, or Generative Adversarial Networks, is a concept within machine learning which aims to generate images that are indistinguishable from real ones. You can train GANs to remember human faces, as well bedrooms, cars, and cats, and of course, generate images of them.

Wang explained that he created the site to create awareness for the algorithm, and chose facesbecause our brains are sensitive to that kind of image.”  He added that it costs $150 a month to hire out the server, as he needs a good amount of graphical power to run the website.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

It also started off as a personal agenda mainly because none of my friends seem to believe this AI phenomenon, and I wanted to convince them,” Wang said. “This was the most shocking presentation I could send them. I then posted it on Facebook and it went viral from there.

I think eventually, given enough data, a big enough neural [network] can be teased into dreaming up many different kinds of scenarios,” Wang added.

Source: https://thispersondoesnotexist.com/
AND
https://mashable.com/

3D-Printed On-Demand Drugs

A pharmaceutical scientist at the University of Sussex has published a guide to 3D and 4D printing technology in the biomedical and pharmaceutical arenas. Dr Mohammed Maniruzzaman, a lecturer in Pharmaceutics and Drug Delivery, edited 3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing’. He also authored sections of the book, alongside an international panel of academic scholars and industry experts. The book, written for pharmaceutical chemists, medicinal chemists, biotechnologists and pharma engineers, covers the key aspects of the printing of medical and pharmaceutical products and the challenges and advances associated with their development. It explores the process optimization, innovation process, engineering and technology behind printed medicine and provides information on biomedical developments such as shape memory polymers, 4D bio-fabrications and bone printing.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are numerous potential applications of this emerging technology. In the future we predict doctors would be able to send a 3D prescription to a Pharmacy, via e-mail or a shared server, and the Pharmacists would then be able to print the required dosage via a 3D printer placed right at the dispensing counter- at the point of need, eliminating the need for paper-based prescriptions. Similarly, we are not far off from when patients would be able to print their own medication on demand by using their small printing unit right at the kitchen or bedside”, explains Dr Maniruzzaman.

Another example can be that a 3D printer or bio-printer placed right by the operation bed in the operation theatre can print the medical implants required for that patient lying on the bed just right at the point of care. The dimensions and geometry of the implants can be tailored specifically for that patient saving both time and cost for manufacturing. Above all, this would enhance the patient compliance significantly,” he adds.

3D printing has appeared as one of the most promising additive manufacturing techniques across many industries, now including the medical and pharmaceutical arenas. 4D printing is an emerging technology that, simply put, refers to a printed object that transforms over time. It is envisaged this technology will revolutionize biomedical developments.

Source: http://www.sussex.ac.uk/

Ai-Da The Artist Robot

A British arts engineering company says it has created the world’s first AI robot capable of drawing people who pose for it. The humanoid called Ai-Da can sketch subjects using a microchip in her eye and a pencil in her robotic hand – coordinated by AI processes and algorithmsAi-Da‘s ability as a life-like robot to draw and paint ultra-realistic portraits from sight has never been achieved before, according to the designers in Cornwall. It is the brainchild of art impresario and galleries Aidan Meller.

Named after Ada Lovelace , the first female computer programmer in the world, Ai-Da the robot has been designed and built by Cornish robotics company Engineered Arts who make robots for communication and entertainment.

In April 2018, Engineered Arts created an ultra-realistic robot to promote the Westworld TV show.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Pioneering a new AI art movement, we are excited to present Ai-Da, the first professional humanoid artist, who creates her own art, as well as being a performance artist. “As an AI robot, her artwork uses AI processes and algorithms. “The work engages us to think about AI and technological uses and abuses in the world today.” explains Aidan Meller.

Professors and post-Phd students at Oxford University and Goldsmiths are providing Ai-Da with the programming and creative design for her art work. While students at Leeds University are custom designing and programming a bionic arm to create her art work.

Ai-Da has a “RoboThespian” body , featuring an expressive range of movements and she has the ability to talk and respond to questions. The robot also has a “Mesmer” head, featuring realistic silicone skin, 3D printed teeth and gums, integrated eye cameras, as well as hair.

Source: http://fortune.com/
AND
https://www.mirror.co.uk/

New Revolutionary All-Electric Pickup Truck Accelerates As A Lamborghini

Following the unveiling of the Rivian R1T all-electric pickup truck, we took a closer look at what is becoming one of the most anticipated EVs scheduled to come out in the next two years.As we already reported, the R1T’s specs are unbelievable.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

It’s equipped with 4 electric motors, each a 147 kW power capacity at the wheel, while the total power output can be configured to different levels from 300 kW to 562 kW (input to gearbox). The acceleration from 0 t0 60 MpH takes 3 seconds!

The different power levels match different choices of battery packs, which are another impressive feature since they have the highest capacity of any other passenger electric vehicle out there: 105 kWh, 135 kWh, and 180 kWhRivian says that it will translate to “230+ miles, 300+ miles, and 400+ miles” of range on a full charge. They’re talking about a charge rate of up to 160 kW at fast-charging stations and an 11-kW onboard charger for level 2 charging.

The entire powertrain is fitted on a slick modular skateboard platform for the different battery capacity: If this thing can really deliver the specs that Rivian is promising, the vehicle is likely to be a success, but the powertrain is only one part of it. The Rivian R1T is a utility vehicle and it has some great utility features – most of them unique in an electric vehicle. First of all, the truck is a 5-seater and it has a ton of enclosed storage space. The frunk is absolutely huge and Rivian also designed another storage space behind the back seat called a “gear tunnel”:

You can actually sit or stand on the door of the gear tunnel when it’s open and it gives you great access to the roof, which can be fitted with different roof racks. It still leaves plenty of room for the cabin and it doesn’t seem to affect the bed too much — though the size of the bed appears to be the most criticized feature so far.

Amazon and GM are in talks to invest massively in Rivian.

Source: https://products.rivian.com
AND
https://electrek.co/

The Ionocraft, Insect-sized Drone That Flies Without Any Moving Parts

Developed by researchers from the University of California, Berkeley, it’s not only described as the smallest flying robot ever made, but one which flies with zero moving parts: meaning no rotors, wings, or similar appendages. Instead, the insect-scale robot relies on atmospheric ion thrusters which allow it to move completely silently.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

To understand how it works, imagine two asymmetric — [such as] a wire and a plate — electrodes,” said Daniel Drew, currently a Postdoctoral Fellow in the Mechanical Engineering department at Stanford University. “When a voltage is applied between the two, the electric field will be stronger in the vicinity of the wire as a function of its geometry. If this field is strong enough, an ambient electron can be pulled in with enough kinetic energy to initiate avalanche breakdown through impact ionization. There’s now a stable plasma, glowing purple in the dark, around the top wire. Generated ions will be ejected from this plasma, drifting in the electric field towards the bottom electrode. Along the way, they collide with neutral air molecules and impart momentum, producing a net thrust.”

Source: https://people.eecs.berkeley.edu/
A
ND
https://www.digitaltrends.com/

Optical Circuits Up To 100 Times Faster Than Electronic Circuits

Optical circuits are set to revolutionize the performance of many devices. Not only are they 10 to 100 times faster than electronic circuits, but they also consume a lot less power. Within these circuits, light waves are controlled by extremely thin surfaces called metasurfaces that concentrate the waves and guide them as needed. The metasurfaces contain regularly spaced nanoparticles that can modulate electromagnetic waves over sub-micrometer wavelength scales.

Metasurfaces could enable engineers to make flexible and ultra-thin optics for a host of applications, ranging from flexible tablet computers to solar panels with enhanced light-absorption characteristics. They could also be used to create flexible sensors for direct placement on a patient’s skin, for example, in order to measure things like pulse and blood pressure or to detect specific chemical compounds.

The catch is that creating metasurfaces using the conventional method, lithography, is a fastidious process that takes several hours and must be done in a cleanroom. But EPFL engineers from the Laboratory of Photonic Materials and Fiber Devices (FIMAP) in Switzerland have now developed a simple method for making them in just a few minutes at low temperatures—or sometimes even at room temperature—with no need for a cleanroom. The EPFL‘s School of Engineering method produces dielectric glass metasurfaces that can be either rigid or flexible. The results of their research appear in Nature Nanotechnology.

The new method employs a natural process already used in : dewetting. This occurs when a thin film of material is deposited on a substrate and then heated. The heat causes the film to retract and break apart into tiny nanoparticles.

Dewetting is seen as a problem in manufacturing—but we decided to use it to our advantage,” says Fabien Sorin, the study’s lead author and the head of FIMAP.

With their method, the engineers were able to create dielectric glass metasurfaces, rather than metallic metasurfaces, for the first time. The advantage of dielectric metasurfaces is that they absorb very little light and have a high refractive index, making it possible to modulate the light that propagates through them.

Source: https://phys.org/

Micromotors Deliver Oral Vaccines

Researchers are working on new generations of oral vaccines for infectious diseases. But to be effective, oral vaccines must survive digestion and reach immune cells within the intestinal wall. As a step in this direction, UC San Diego nanoengineering researchers have developed oral vaccines powered by micromotors that target the mucus layer of the intestine.

The work appears in the ACS journal Nano Letters. It’s a collaboration between the labs of nanoengineering professors Joseph Wang and Liangfang Zhang at the UC San Diego Jacobs School of Engineering.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The lack of needles is one reason oral vaccines are attractive. Another reason: oral vaccines can generate a broad immune response by stimulating immune cells within the mucus layer of the intestine to produce a special class of antibody called immunoglobulin A (IgA). The NanoLetters paper documents the team’s efforts to use magnesium particles as tiny motors to deliver an oral vaccine against the bacterial pathogen Staphylococcus aureus. When coated over most of their surfaces with titanium dioxide, magnesium microparticles use water as fuel to generate hydrogen bubbles that power their propulsion.

To develop the oral vaccine, the researchers coated magnesium micromotors with red blood cell membranes that displayed the Staphylococcal α-toxin, along with a layer of chitosan to help them stick to the intestinal mucus. Then, they added an enteric coating that protects drugs from the acidic conditions of the stomach.

The micromotors safely passed through the stomach to the intestine, at which point the enteric coating dissolved, activating the motors. Imaging of mice that had been given the vaccine showed that the micromotors accumulated in the intestinal wall much better than non-motorized particles. The micromotors also stimulated the production of about ten times more IgA antibodies against the Staphylococcal α-toxin than the static particles.

Source: http://jacobsschool.ucsd.edu/

Ruthenium-based Catalyst Outperforms Platinum To Produce Hydrogen

A novel ruthenium-based catalyst developed at UC Santa Cruz has shown markedly better performance than commercial platinum catalysts in alkaline water electrolysis for hydrogen production. The catalyst is a nanostructured composite material composed of carbon nanowires with ruthenium atoms bonded to nitrogen and carbon to form active sites within the carbon matrix.

The electrochemical splitting of water to produce hydrogen is a crucial step in the development of hydrogen as a clean, environmentally friendly fuel (for car or heating system). Much of the effort to reduce the cost and increase the efficiency of this process has focused on finding alternatives to expensive platinum-based catalysts. At UC Santa Cruz, researchers led by Shaowei Chen, professor of chemistry and biochemistry, have been investigating catalysts made by incorporating ruthenium and nitrogen into carbon-based nanocomposite materials. Their new findings, published February 7 in Nature Communications, not only demonstrate the impressive performance of their ruthenium-based catalyst but also provide insights into the mechanisms involved, which may lead to further improvements.

Electron microscopy of carbon nanowires co-doped with ruthenium and nitrogen shows ruthenium nanoparticles decorating the surface of the nanowires. Elemental mapping analysis shows individual ruthenium atoms within the carbon matrix (red arrows, below).

 

 

 

 

 

 

 

 

This is a clear demonstration that ruthenium can have remarkable activity in catalyzing the production of hydrogen from water,” Chen said. “We also characterized the material on the atomic scale, which helped us understand the mechanisms, and we can use these results for the rational design and engineering of ruthenium-based catalysts.

Electron microscopy and elemental mapping analysis of the material showed ruthenium nanoparticles as well as individual ruthenium atoms within the carbon matrix. Surprisingly, the researchers found that the main sites of catalytic activity were single ruthenium atoms rather than ruthenium nanoparticles.

Source: https://news.ucsc.edu/