Category Archives: Uncategorized

Ultrathin, Ultralight NanoCardboard For Aerospace

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure. Now, a team of Penn Engineers has demonstrated a new material they call “nanocardboard,” an ultrathin equivalent of corrugated paper cardboard. A square centimeter of nanocardboard weighs less than a thousandth of a gram and can spring back into shape after being bent in half.

Nanocardboard is made out of an aluminum oxide film with a thickness of tens of nanometers, forming a hollow plate with a height of tens of microns. Its , similar to that of corrugated cardboard, makes it more than ten thousand times as stiff as a solid plate of the same mass.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Nanocardboard is made out of an aluminum oxide film with a thickness of tens of nanometers, forming a hollow plate with a height of tens of microns. Its sandwich structure, similar to that of corrugated cardboard, makes it more than ten thousand times as stiff as a solid plate of the same mass. A square centimeter of nanocardboard weighs less than a thousandth of a gram and can spring back into shape after being bent in half.

Nanocardboard‘s stiffness-to-weight ratio makes it ideal for aerospace and microrobotic applications, where every gram counts. In addition to unprecedented mechanical properties, nanocardboard is a supreme thermal insulator, as it mostly consists of empty space. Future work will explore an intriguing phenomenon that results from a combination of properties: shining a light on a piece of nanocardboard allows it to levitate. Heat from the light creates a difference in temperatures between the two sides of the plate, which pushes a current of air molecules out through the bottom.

Igor Bargatin, Assistant Professor of Mechanical Engineering, along with lab members Chen Lin and Samuel Nicaise, led the study.

They published their results in the journal Nature Communications.

Source: https://phys.org/

Stem Cell Therapy Could Treat Alzheimer’s And Parkinson’s

Rutgers scientists have created a tiny, biodegradable scaffold to transplant stem cells and deliver drugs, which may help treat Alzheimer’s and Parkinson’s diseases, aging brain degeneration, spinal cord injuries and traumatic brain injuriesStem cell transplantation, which shows promise as a treatment for central nervous system diseases, has been hampered by low cell survival rates, incomplete differentiation of cells and limited growth of neural connections.

So, Rutgers scientists designed bio-scaffolds that mimic natural tissue and got good results in test tubes and mice. These nano-size scaffolds hold promise for advanced stem cell transplantation and neural tissue engineering. Stem cell therapy leads to stem cells becoming neurons and can restore neural circuits.

It’s been a major challenge to develop a reliable therapeutic method for treating central nervous system diseases and injuries,” said study senior author KiBum Lee, a professor in the Department of Chemistry and Chemical Biology at Rutgers University-New Brunswick. “Our enhanced stem cell transplantation approach is an innovative potential solution.

The researchers, in cooperation with neuroscientists and clinicians, plan to test the nano-scaffolds in larger animals and eventually move to clinical trials for treating spinal cord injury. The scaffold-based technology also shows promise for regenerative medicine.

The study included researchers from Rutgers and Kyung Hee University in South Korea. The results have been published in  Nature Communications.

Source: https://www.eurekalert.org/

Mapping Genes Of All Complex Life On Earth

In an effort to protect and preserve the Earth’s biodiversity and kick-start an inclusive bio-economy, the World Economic Forum have announced a landmark partnership between the Earth BioGenome Project, chaired by Harris Lewin, distinguished professor at the University of California, Davis, and the Earth Bank of Codes to map the DNA of all life on Earth. The announcement was made at the 48th World Economic Forum Annual Meeting in Davos-Klosters, Switzerland.

The Earth Biogenome Project aims to sequence the DNA of all the planet’s eukaryotessome 1.5 million known species including all known plants, animals and single-celled organisms. The ambitious project will take 10 years to complete and cost an estimated $4.7 billion. Of the estimated 15 million eukaryotic species, only 10 percent have been taxonomically classified. Of that percentage, scientists have sequenced the genomes of around 15,000 species, less than 0.1 percent of all life on Earth.

The partnership will construct a global biology infrastructure project to sequence life on the planet to enable solutions for preserving the Earth’s biodiversity, managing ecosystems, spawning bio-based industries and sustaining human societies,” said Lewin, who chairs the Earth BioGenome Project working group. Lewin holds appointments in the Department of Evolution and Ecology and the UC Davis Genome Center.

Source: https://www.universityofcalifornia.edu/

AI Lie Detectors Could Reach 85% Accuracy

It’s already nerve-wracking answering questions at the border, and some ports in the European Union are taking it to another, kinda worrying level. They’re installing an artificial intelligence-powered system called iBorderCtrl, which aims to speed up the processing of travellers, but also to determine if they’re lying. A six-month trial will take place at four border crossing points in Hungary, Greece and Latvia.

During pre-screening, users will upload their passport, visa, and proof of funds, then answer questions asked by a computer-generated border guard to a webcam. The system will analyse the user’s microexpressions to determine if they’re lying, and they’ll be flagged as either low or high risk. People will be asked questions like “What’s in your suitcase?” and “If you open the suitcase and show me what is inside, will it confirm that your answers were true?” For those who pass the test, they’ll receive a QR code that will let them pass through. If there’s additional concern, their biometric data will be taken, and be handed off to a human agent who will assess the case.

We’re employing existing and proven — as well as novel ones — to empower border agents to increase the accuracy and efficiency of border checks,” project coordinator George Boultadakis told the European Commission “iBorderCtrl’s system will collect data that will move beyond biometrics and on to biomarkers of deceit.

Of course, there’s the question of how accurate a system like this could be. iBorderCtrl is still in its early stages, and a team member told that early testing provided a 76 percent success rate, but believe this could be raised to 85 percent.

Source: https://mashable.com/

Paraplegics Walk Again With Electrical Stimulation

Three paraplegics who sustained cervical spinal cord injuries many years ago are now able to walk with the aid of crutches or a walker thanks to new rehabilitation protocols that combine targeted electrical stimulation of the lumbar spinal cord and weight-assisted therapy.

This latest study, called STIMO (STImulation Movement Overground), establishes a new therapeutic framework to improve recovery from spinal cord injury. All patients involved in the study recovered voluntary control of leg muscles that had been paralyzed for many years. Unlike the findings of two independent studies published recently in the United States on a similar concept, neurological function was shown to persist beyond training sessions even when the electrical stimulation was turned off.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Our findings are based on a deep understanding of the underlying mechanisms which we gained through years of research on animal models. We were thus able to mimic in real time how the brain naturally activates the spinal cord,” says EPFL neuroscientist Grégoire Courtine.

All the patients could walk using body weight support within one week. I knew immediately that we were on the right path,” adds CHUV neurosurgeon Jocelyne Bloch, who surgically placed the implants in the patients.

The exact timing and location of the electrical stimulation are crucial to a patient’s ability to produce an intended movement. It is also this spatiotemporal coincidence that triggers the growth of new nerve connections,” says Courtine.

The STIMO study, led by the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Lausanne University Hospital (CHUV ) in Switzerland, is published in  Nature and Nature Neuroscience.

Source: https://actu.epfl.ch/

How To Use Power Plant Carbon Dioxide To Grow Fish Food

Norway is known as a world leader in exporting oil and gas — but it’s also a leading fish exporter. However with global demand growing, feeding all these fish is getting more expensive and challenging. In the first half of this year Norway’s salmon export value reached the highest ever recorded and the value of exported Norwegian salmon to Asia during that time period was up 30 percent year-over-year.

At the same time that demand for farmed fish is growing, the aquaculture industry is facing a shortage of omega-3: the fatty acids used in fish feed. This process could be made more economical and sustainable with a little help from creative technological innovation.

In a new take on the concept of carbon capture, engineers in Norway are now trying to harness the carbon dioxide emitted from power plants and use it to grow fish food. The pilot project by Norway’s Technology Centre Mongstad (TCM) is using captured CO2 to grow omega-3 fatty acid-rich algae for fish feed. Omega-3 fatty acids, which are essential for fish growth and are added to feed, are running low in global stocks and finding a sustainable, affordable source is crucial to the industry. The demand for omega-3 fatty acids in the nutrition supplement industry is also causing demand to rise.

The project, which received $1 million in funding from the Norwegian government, will grow algae in tanks in a 300-meter test facility using captured CO2 and heat from a gas-fired power plant. CO2Bio, a collaboration of industrial and research stakeholders including Salmon Group and Grieg Seafood, will operate the plant during the five-year pilot phase. The backers of the project told BBC that a metric ton of CO2 will produce a metric ton of algae, which they believe can yield 300–400kg of fish oil — a figure they hope to improve on by the end of the five-year test to determine economic viability.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The need is approximately 100,000 tonnes, and that’s a large scale,” Svein Nordvik, from CO2BIO, told the BBC. “The reason for the test center is to develop the techniques and optimize the production line so we can have a decision on large scale production.”

From a greenhouse gas emission perspective, while pumping the CO2 underground would be better, using it for economically productive industrial practices is better than pumping it out into the atmosphere. The food will feed fish, which will nourish people and the refuse could be composted.

Source: https://thinkprogress.org/

Ultrasonic Comb Kills Lice

The Israeli company ParaSonic is developing a revolutionary home-use ultrasonic device that kills lice and their eggs in a single 5-minute combing treatmentHead lice infestations are a global problem, with 12 million infestations in children and adults every year in the United States alone. It can be very difficult to completely eradicate head lice, and re-infection occurs easily.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

ParaSonic’s revolutionary home-use comb, XlicerTM kills lice and their eggs in a single combing treatment that takes about 5 minutes. Ultrasound waves generated by the teeth of the wide-toothed comb destroy lice and lice eggs after exposure of about one second. XlicerTM simultaneously sprays a natural solution onto the hair, to augment the efficacy of the the ultrasound and significantly increase the lice and eggs’ mortality. Because there is no use of pesticides, there is no possibility of the lice developing resistance. The comb’s wide-tooth design means no discomfort to the person being treated.

Source: http://para-sonic.com/

Nanotubes Boost Batteries Efficiency

The Rice lab of chemist James Tour showed thin nanotube films effectively stop dendrites that grow naturally from unprotected lithium metal anodes in batteries. Over time, these tentacle-like dendrites can pierce the battery’s electrolyte core and reach the cathode, causing the battery to fail. That problem has both dampened the use of lithium metal in commercial applications and encouraged researchers worldwide to solve it.

Lithium metal charges much faster and holds about 10 times more energy by volume than the lithium-ion electrodes found in just about every electronic device, including cellphones and electric cars.

Microscope images of lithium metal anodes after 500 charge/discharge cycles in tests at Rice University show the growth of dendrites is quenched in the anode at left, protected by a film of carbon nanotubes. The unprotected lithium metal anode at right shows evidence of dendrite growth

One of the ways to slow dendrites in lithium-ion batteries is to limit how fast they charge,” Tour said. “People don’t like that. They want to be able to charge their batteries quickly.”

The Rice team’s answer, detailed in Advanced Materials, is simple, inexpensive and highly effective at stopping dendrite growth, Tour said. “What we’ve done turns out to be really easy,” he said. “You just coat a lithium metal foil with a multiwalled carbon nanotube film. The lithium dopes the nanotube film, which turns from black to red, and the film in turn diffuses the lithium ions.

Source: http://news.rice.edu/

Man With Multiple Sclerosis Walks Again After Stem Cell Transplant

For a decade, Roy Palmer had no control of his legs. The man from Gloucester, England, had multiple sclerosis, or MS, which results in the body’s immune system eating away at the protective covering of nerves, disrupting communication between the brain and the body.  Palmer had no feeling in his legs and used a wheelchair. But last year, he received a life-changing treatment that restored his ability to walk — and dance — again,the BBC reports. The dad first heard of the treatment, called HSCT (hematopoietic stem cell transplantation), on the BBC program, “Panorama.”

Two people on that program went into Sheffield Hospital in wheelchairs and they both came out walking,” Palmer said. “As soon as we saw that, we both cried,” Palmer’s wife told the BBC. According to the National MS Society, HSCT still considered experimental, but Palmer decided it was worth a try.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

If they can have that done, on a trial, why can’t I have it done?” Palmer said. So last year, the 49-year-old started the grueling treatment, which is potentially risky, the BBC reports. HSCT doesn’t always work and there is a long-term risk of infection and infertility. “They take the stem cells out of your body. They give you chemotherapy to kill the rest of your immune system,” Palmer told the BBC. The stem cells are then used to reboot the immune system. “Let’s hope it works,” Palmer adds in a home video taken just before the treatment. It did. After HSCT, he regained feeling in his left leg within two days. “I haven’t felt that in 10 years,” comments Palmer. “It’s a miracle.” Eventually, he regained feeling in both of his legs and began to walk.

Source: https://www.cbsnews.com/

Cheap High-Performance Catalysts For Hydrogen Electric Car

The industry has been traditionally deploying platinum alloys as catalysts for oxygen reduction, which is for example essential in fuel cells or metal-air batteries. Expensive and rare, that metal imposes strict restrictions on manufacture. Researchers at Ruhr-Universität Bochum (RUB) and Max-Planck-Institut für Eisenforschung in Germany have discovered an alloy made up of five elements that is noble metal-free and as active as platinum.  The catalytic properties of non-noble elements and their alloys are usually rather poor. To the researchers’ surprise, one alloy made up of five almost equally balanced components offer much better properties. This is because of the so-called high entropy effect. It causes multinary alloys to maintain a simple crystal structure.

Through the interaction of different neighbouring elements, new active centres are formed that present entirely new properties and are therefore no longer bound to the limited properties of the individual elements,” explains Tobias Löffler, PhD student at the RUB Chair of Analytical ChemistryCenter for Electrochemical Sciences headed by Professor Wolfgang Schuhmann. “Our research has demonstrated that this alloy might be relevant for catalysis.”

Headed by Professor Christina Scheu, the research team at the Max-Planck-Institut für Eisenforschung analysed the generated nanoparticles using transmission electron microscopy. RUB chemists determined their catalytic activity and compared it with that of platinum nanoparticles. In the process, they identified a system made of up five elements where the high entropy effect results in catalytic activity for an oxygen reduction that is similar to that of platinum. By optimising the composition further, they successfully improved the overall activity.

These findings may have far-reaching consequences for electrocatalysis in general,” surmises Wolfgang Schuhmann. The researchers are hoping to adapt the properties for any required reactions by taking advantage of the almost infinite number of possible combinations of the elements and modifications of their composition. “Accordingly, the application will not necessarily be limited to oxygen reduction,” says Ludwig. The research team has already applied for a patent.

The results are published in the journal Advanced Energy Materials.

Source: http://news.rub.de/