Tag Archives: battlefield

How The Army Uses Microsoft’s HoloLens On The Battlefield


CLICK ON THE IMAGE TO ENJOY THE VIDEO

The headset is impressive — better than any augmented reality experience, including Magic Leap, which also tried to win the Army contract. The project is also a showcase for the Army’s plans to work more closely with America’s tech companies to speed innovation in military. The military calls its special version of the HoloLens 2IVAS,” which stands for Integrated Visual Augmentation System. It’s an augmented-reality headset, which means it places digital objects, such as maps or video displays, on top of the real world in front of you. Several companies are betting big on AR as the future of computing, since it will allow us to do much of what we can on a computer but while looking through glasses instead of down at a phone or at a computer screen. Apple, Google and Magic Leap are all building AR-capable software and hardware.

Put the headset on and pulled it down so that your eyes are peering through a glass visor. That visor is capable of displaying 3D images, information, my location and more. IVAS isn’t nearly finished.

Source: https://www.cnbc.com/

Using Graphene, Munitions Go Further, Much Faster

Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.

This discovery coincides with the one of the Army‘s modernization priorities: Long Range Precision Fires. This research could lead to enhanced energetic performance of metal powders as propellant/explosive ingredients in Army’s munitions.

Lauded as a miracle material, graphene is considered the strongest and lightest material in the world. It’s also the most conductive and transparent, and expensive to produce. Its applications are many, extending to electronics by enabling touchscreen laptops, for example, with light-emitting diode, or LCD, or in organic light-emitting diode, or OLED displays and medicine like DNA sequencing. By oxidizing graphite is cheaper to produce en masse. The result: graphene oxide (GO).

Scanning electron micrograph shows the Al/GO composite.

Although GO is a popular two-dimensional material that has attracted intense interest across numerous disciplines and materials applications, this discovery exploits GO as an effective light-weight additive for practical energetic applications using micron-size aluminum powders (µAl), i.e., aluminum particles one millionth of a meter in diameter.

The research team published their findings in the October edition of ACS Nano with collaboration from the RDECOM Research Laboratory, the Army’s corporate research laboratory (ARL), Stanford University, University of Southern California, Massachusetts Institute of Technology and Argonne National Laboratory.

Source: https://www.arl.army.mil/