Tag Archives: DGIST

Transparent and Flexible Battery for Power Generation and Storage at Once

DGIST research group in South Korea  developed single-layer graphene based multifunctional transparent devices  Various use of electronics and skin-attachable devices are expected with the development of transparent battery that can both generate and store power.The scientists in the Smart Textile Research Group developed film-type graphene based multifunctional transparent energy devices.

The team actively used ‘single-layered graphene film’ as electrodes in order to develop transparent devices. Due to its excellent electrical conductivity and light and thin characteristics, single-layered graphene  film is perfect for electronics that require batteries. By using high-molecule nano-mat that contains semisolid electrolyte, the research team succeeded in increasing transparency (maximum of 77.4%) to see landscape and letters clearly.

Furthermore, the researchers designed structure for electronic devices to be self-charging and storing by inserting energy storage panel inside the upper layer of power devices and energy conversion panel inside the lower panel. They even succeeded in manufacturing electronics with touch-sensing systems by adding a touch sensor right below the energy storage panel of the upper layer.

We decided to start this research because we were amazed by transparent smartphones appearing in movies. While there are still long ways to go for commercialization due to high production costs, we will do our best to advance this technology further as we made this success in the transparent energy storage field that has not had any visible research performances”, explains Changsoon Choi from the Smart Textile Research Group, and co-author of the paper published on the online edition of ACS Applied Materials & Interfaces.

The findings were also conducted as a joint research with various organisations such as Yonsei University, Hanyang University, and the Korea Institute of Industrial Technology (KITECH).

Source:  https://www.dgist.ac.kr/

Cheap Nano-Catalysts For Better Fuel Cells

Researchers at Daegu Gyeongbuk Institute of Science & Technology (DGIST) in Korea have developed nano-catalysts that can reduce the overall cost of clean energy fuel cells, according to a study published in the Journal of Applied Catalysis B: Environmental.

Polymer electrolyte membrane fuel cells (PEMFCs) transform the chemical energy produced during a reaction between hydrogen fuel and oxygen into electrical energy. While PEMFCs are a promising source of clean energy that is self-contained and mobile – much like the alkaline fuel cells used on the US Space Shuttle – they currently rely on expensive materials. Also, the substances used for catalysing these chemical reactions degrade, raising concerns about reusability and viability.

DGIST energy materials scientist Sangaraju Shanmugam and his team have developed active and durable catalysts for PEMFCs that can reduce the overall manufacturing costs. The catalysts were nitrogen-doped carbon nanorods with ceria and cobalt nanoparticles on their surfaces; essentially carbon nanorods containing nitrogen, cobalt and ceria. Ceria (CeO2), a combination of cerium and oxygen, is a cheap and environmentally friendly semiconducting material that has excellent oxygen reduction abilities.

The fibres were made using a technique known as electrospinning, in which a high voltage is applied to a liquid droplet, forming a charged liquid jet that then dries midflight into uniform, nanosized particles. The researchers’ analyses confirmed that the ceria and cobalt particles were uniformly distributed in the carbon nanorods and that the catalysts showed enhanced electricity-producing capacity.

The ceria-supported cobalt on nitrogen-doped carbon nanorod catalyst was found to be more active and durable than cobalt-only nitrogen-doped carbon nanorods and platinum/carbon. They were explored in two important types of chemical reactions for energy conversion and storage: oxygen reduction and oxygen evolution reactions.

The researchers conclude that ceria could be considered among the most promising materials for use with cobalt on nitrogen-doped carbon nanorods to produce stable catalysts with enhanced electrochemical activity in PEMFCs and related devices.

Source: https://www.dgist.ac.kr/