Tag Archives: Ecole Polytechnique Fédérale de Lausanne

Nanorobots Deliver Drugs Directly To Diseased Tissue

Scientists at EPFL and ETH Zurich in Switzerland have developed tiny elastic robots that can change shape depending on their surroundings. Modeled after bacteria and fully biocompatible, these robots optimize their movements so as to get to hard-to-reach areas of the human body. They stand to revolutionize targeted drug delivery.

One day we may be able to ingest tiny robots that deliver drugs directly to diseased tissue, thanks to research being carried out at EPFL and ETH Zurich.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The robots are modeled after bacteria and fully biocompatible© 2019 EPFL/ ETHZ

The group of scientists – led by Selman Sakar at EPFL and Bradley Nelson at ETH Zurich – drew inspiration from bacteria to design smart, biocompatible microrobots that are highly flexible. Because these devices are able to swim through fluids and modify their shape when needed, they can pass through narrow blood vessels and intricate systems without compromising on speed or maneuverability. They are made of hydrogel nanocomposites that contain magnetic nanoparticles allowing them to be controlled via an electromagnetic field.

In an article appearing in Science Advances, the scientists describe the method they have developed for “programming the robot’s shape so that it can easily travel through fluids that are dense, viscous or moving at rapid speeds. When we think of robots, we generally think of bulky machines equipped with complex systems of electronics, sensors, batteries and actuators. But on a microscopic scale, robots are entirely different.

Fabricating miniaturized robots presents a host of challenges, which the scientists addressed using an origami-based folding method. Their novel locomotion strategy employs embodied intelligence, which is an alternative to the classical computation paradigm that is performed by embedded electronic systems.Our robots have a special composition and structure that allow them to adapt to the characteristics of the fluid they are moving through. For instance, if they encounter a change in viscosity or osmotic concentration, they modify their shape to maintain their speed and maneuverability without losing control of the direction of motion,” says Sakar.

These deformations can be “programmed” in advance so as to maximize performance without the use of cumbersome sensors or actuators. The robots can be either controlled using an electromagnetic field or left to navigate on their own through cavities by utilizing fluid flow. Either way, they will automatically morph into the most efficient shape.

Source: https://actu.epfl.ch/

Paraplegics Walk Again With Electrical Stimulation

Three paraplegics who sustained cervical spinal cord injuries many years ago are now able to walk with the aid of crutches or a walker thanks to new rehabilitation protocols that combine targeted electrical stimulation of the lumbar spinal cord and weight-assisted therapy.

This latest study, called STIMO (STImulation Movement Overground), establishes a new therapeutic framework to improve recovery from spinal cord injury. All patients involved in the study recovered voluntary control of leg muscles that had been paralyzed for many years. Unlike the findings of two independent studies published recently in the United States on a similar concept, neurological function was shown to persist beyond training sessions even when the electrical stimulation was turned off.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Our findings are based on a deep understanding of the underlying mechanisms which we gained through years of research on animal models. We were thus able to mimic in real time how the brain naturally activates the spinal cord,” says EPFL neuroscientist Grégoire Courtine.

All the patients could walk using body weight support within one week. I knew immediately that we were on the right path,” adds CHUV neurosurgeon Jocelyne Bloch, who surgically placed the implants in the patients.

The exact timing and location of the electrical stimulation are crucial to a patient’s ability to produce an intended movement. It is also this spatiotemporal coincidence that triggers the growth of new nerve connections,” says Courtine.

The STIMO study, led by the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Lausanne University Hospital (CHUV ) in Switzerland, is published in  Nature and Nature Neuroscience.

Source: https://actu.epfl.ch/

How To Pilot A Drone Using Virtual Reality

Imagine piloting a drone using the movements of your torso only and leaving your head free to look around, much like a bird. The Ecole Polytechnique Fédérale de Lausanne  (EPFL) research, in Switzerland,  has just shown that using your torso to pilot flying machines is indeed more immersive – and more effective – than using the long-established joystick.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Our aim was to design a control method which would be easy to learn and therefore require less mental focus from the users so that they can focus on more important issues, like search and rescue,” says lead author Jenifer Miehlbradt of EPFL’s Translational Neuroengineering Laboratory led by Bertarelli Foundation Chair Silvestro Micera. “Using your torso really gives you the feeling that you are actually flying. Joysticks, on the other hand, are of simple design but mastering their use to precisely control distant objects can be challenging.

The scientists wanted to observe how people use their bodies to pilot a flying object, in this case a drone, and determine which movements are most intuitive and natural – approaching the pilot problem from a completely new perspective.

They started by monitoring the body movements of 17 individuals thanks to 19 infrared markers placed all over the upper body as well as their muscular activity. Each participant followed the actions of a virtual drone through simulated landscapes that passed-by as viewed through virtual reality goggles.

The results are published in the journal PNAS.

Source: https://actu.epfl.ch/