Tag Archives: electricity

How To Create Electricity From Snowfall

Researchers from University of California at Los Angeles (UCLA) and colleagues have designed a new device that creates electricity from falling snow. The first of its kind, this device is inexpensive, small, thin and flexible like a sheet of plastic.

The device can work in remote areas because it provides its own power and does not need batteries,” said senior author Richard Kaner, who holds UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation. “It’s a very clever device — a weather station that can tell you how much snow is falling, the direction the snow is falling, and the direction and speed of the wind.”

The researchers call it a snow-based triboelectric nanogenerator, or snow TENG. A triboelectric nanogenerator, which generates charge through static electricity, produces energy from the exchange of electrons.

Static electricity occurs from the interaction of one material that captures electrons and another that gives up electrons,” said Kaner, who is also a distinguished professor of chemistry and biochemistry, and of materials science and engineering, and a member of the California NanoSystems Institute at UCLA. “You separate the charges and create electricity out of essentially nothing.”

Snow is positively charged and gives up electrons. Silicone — a synthetic rubber-like material that is composed of silicon atoms and oxygen atoms, combined with carbon, hydrogen and other elements — is negatively charged. When falling snow contacts the surface of silicone, that produces a charge that the device captures, creating electricity.

Snow is already charged, so we thought, why not bring another material with the opposite charge and extract the charge to create electricity?” said co-author Maher El-Kady, a UCLA assistant researcher of chemistry and biochemistry.

While snow likes to give up electrons, the performance of the device depends on the efficiency of the other material at extracting these electrons,” he added. “After testing a large number of materials including aluminum foils and Teflon, we found that silicone produces more charge than any other material.”

Findings about the device are published in the journal Nano Energy.

Source: https://newsroom.ucla.edu/

Paris orders 800 new electric buses to fight smog

Three French engineering firms — Heuliez Bus, Bollore and Alstom — won the tender to supply the buses in deals worth up to 400 million euros ($450 million), the transport operator RATP  said. RATP will buy an equal number of buses from each supplier, it added, describing the tender as the biggest such bus purchase in Europe. It will begin by buying 150 buses, with the first deliveries expected between the end of 2020 and 2022, it added.

Local authorities in Paris want the French capital to have 100-percent clean buses by 2025 by using both electricity and biofuels.

This is a major step for the RATP and a symbol of its ambition to be a key player in the energy transition in the public transport sector,” said RATP chief executive Catherine Guillouard.

To put them into service, the company is mobilised to meet an industrial challenge within a very short tight deadline,” she added.

Paris already has one line — number 341 — fully operational with electric buses, but it will be a major task to transform its full fleet of just under 4,700 busesRATP currently has some 950 hybrid-powered buses, 140 bio-fuel buses and 83 electric buses in its fleet.

The use of electric buses is growing all over the world, with China the leader in employing the technology as it seeks to relieve pollution in clogged cities. But they are becoming an increasingly familiar sight in European cities, in particular in Dutch cities Amsterdam and Rotterdam. Paris’ Socialist Mayor Anne Hidalgo has made tackling smog a priority and is planning stricter rules aimed at phasing out diesel cars by 2024, and is also weighing the idea of making public transport free.

Source: https://www.france24.com/

How To ConVert Waste Heat Into Electricity

Thermoelectric materials, capable of transforming heat into electricity, are very promising when converting residual heat into electrical energy, since they allow us to utilize hardly usable or almost lost thermal energy in an efficient way. Researchers at the Institute of Materials Science of Barcelona (ICMAB-CSIC) have created a new thermoelectric material: a paper capable of converting waste heat into electricity. These devices could be used to generate electricity from residual heat to feed sensors in the field of the Internet of Things, Agriculture 4.0 or Industry 4.0.


This device is composed of cellulose, produced in situ in the laboratory by bacteria, with small amounts of a conductor nanomaterial, carbon nanotubes, using a sustainable and environmentally friendly strategy” explains Mariano Campoy-Quiles, researcher at the ICMAB.

“In the near future, they could be used as wearable devices, in medical or sports applications, for example. And if the efficiency of the device was even more optimized, this material could lead to intelligent thermal insulators or to hybrid photovoltaic-thermoelectric power generation systems” predicts Campoy-Quiles. In addition “due to the high flexibility of the cellulose and to the scalability of the process, these devices could be used in applications where the residual heat source has unusual forms or extensive areas, as they could be completely covered with this material” indicates Anna Roig, researcher at the ICMAB.

Since bacterial cellulose can be home made, perhaps we are facing the first step towards a new energy paradigm, where users will be able to make their own electric generators. We are still far away, but this study is a beginning. We have to start somewhere. “Instead of making a material for energy, we cultivate it” explains Mariano Campoy-Quiles, a researcher of this study. “Bacteria, dispersed in an aqueous culture medium containing sugars and carbon nanotubes, produce the nanocellulose fibers that will end up forming the device, in which the carbon nanotubes are embedded” continues Campoy-Quiles.”We obtain a mechanically resistant, flexible and deformable material, thanks to the cellulose fibers, and with a high electrical conductivity, thanks to the carbon nanotubes,” adds Anna Laromaine, researcher at the ICMAB. “The intention is to approach the concept of circular economy, using sustainable materials that are not toxic for the environment, which are used in small amounts, and which can be recycled and reused,“says Roig.

The study has been published in the Energy & Environmental Science journal.

Source: http://icmab.es/