Tag Archives: Parkinson’s

Stem Cell Therapy Could Treat Alzheimer’s And Parkinson’s

Rutgers scientists have created a tiny, biodegradable scaffold to transplant stem cells and deliver drugs, which may help treat Alzheimer’s and Parkinson’s diseases, aging brain degeneration, spinal cord injuries and traumatic brain injuriesStem cell transplantation, which shows promise as a treatment for central nervous system diseases, has been hampered by low cell survival rates, incomplete differentiation of cells and limited growth of neural connections.

So, Rutgers scientists designed bio-scaffolds that mimic natural tissue and got good results in test tubes and mice. These nano-size scaffolds hold promise for advanced stem cell transplantation and neural tissue engineering. Stem cell therapy leads to stem cells becoming neurons and can restore neural circuits.

It’s been a major challenge to develop a reliable therapeutic method for treating central nervous system diseases and injuries,” said study senior author KiBum Lee, a professor in the Department of Chemistry and Chemical Biology at Rutgers University-New Brunswick. “Our enhanced stem cell transplantation approach is an innovative potential solution.

The researchers, in cooperation with neuroscientists and clinicians, plan to test the nano-scaffolds in larger animals and eventually move to clinical trials for treating spinal cord injury. The scaffold-based technology also shows promise for regenerative medicine.

The study included researchers from Rutgers and Kyung Hee University in South Korea. The results have been published in  Nature Communications.

Source: https://www.eurekalert.org/

Laser Shoes to Fight Parkinson’s

Freezing of gait, an absence of forward progression of the feet despite the intention to walk, is a debilitating symptom of Parkinson’s disease. Laser shoes that project a line on the floor to the rhythm of the footsteps help trigger the person to walk. The shoes benefit the wearer significantly, according to research by the University of Twente and Radboud university medical center (Netherlands), which has been published in Neurology, the scientific journal of the American Academy of Neurology.


CLICK ON THE IMAGE TO ENJOY THE VIDEO

Walking problems are common and very disabling in Parkinson’s disease. In particular, freezing of gait is a severe symptom which generally develops in more advanced stages. It can last seconds to minutes and is generally triggered by the stress of an unfamiliar environment or when medication wears off. Because the foot remains glued to the floor but the upper body continues moving forward, it can cause the person to lose her balance and fall.
Parkinson patient experience a unique phenomenon. By consciously looking at objects on the floor, such as the lines from a zebra crossing (‘visual cues’), and stepping over them, they are able to overcome their blockages during walking. This activates other circuits in the brain, hereby releasing the blockages and allowing the person to continue walking. This is why patients often make use of floor tiles at home. With the laser shoes, these useful cues can be continuously applied in everyday life, to walk better and safer. The principle behind the laser shoes is simple: upon foot contact, the left shoe projects a line on the floor in front of the right foot. The patient steps over or towards the line, which activates the laser on the right shoe, and so on.

The present research study shows a beneficial effect in a large group of patients. The number of ‘freezingepisodes was reduced by 46% with the use of the shoes. The duration of these episodes was also divided by two. Both effects were strongest in patients while they had not taken their medication yet. This is typically when patients experience the most problems with walking. But an improvement was also seen after the patients had been taking their medication.

Source: https://www.utwente.nl/

How To Deliver Drug Deep In The Brain

By learning how rabies virus travels in the brain, Anti-Parkinson’s drug can be delivered deep in the brain where currently the drugs are not able to reachRabies virus has the capability to trick the nervous system and cross the blood brain barrier. This trick could be used for drug design. Glycoprotein 29 present on the rabies virus is attached to a nanoparticle stuffed full of deferoxamine ( Anti-Parkinson’s medication) and injected into the brain to trick the brain.

Rabies virus may have some tricks to bypass the blood brain barrier, this trick can be used to treat disease that require drugs to effectively cross the blood brain barrier, finds a new study.

The researchers can now exploit rabies viruses machinery to deliver a Parkinson’s disease medication directly to the brain. Upon injection the nanoparticles grab excess iron and relieve symptoms. While the common cause of Parkinson’s disease is unknown, it has been proved that accumulation of iron in neurons is one of the commonest features of Parkinson’s disease.

Deferoxamine is a metal-grabbing compound and sop up the excess iron in patients. But a large quantity of this drug needs to reach the brain in order for them work.
To usher deferoxamine into the brain, the researchers Yan-Zhong Chang, Xin Lou, Guangjun Nie took advantage of a key part of the rabies virusGlycoprotein 29.
When they injected this iron-grabbing nanoparticles into mouse models of Parkinson’s disease, the iron levels dropped and this reduced brain damage caused by Parkinson’s disease.

The findings of this study is published in the ACS Nano journal.

Source: https://www.acs.org/