Tag Archives: Stanford University

How To Trap CO2 Molecules

Scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have taken the first images of carbon dioxide molecules within a molecular cage ­­– part of a highly porous nanoparticle known as a MOF, or metal-organic framework, with great potential for separating and storing gases and liquids.

The images, made at the Stanford-SLAC Cryo-EM Facilities, show two configurations of the COmolecule in its cage, in what scientists call a guest-host relationship; reveal that the cage expands slightly as the CO2 enters; and zoom in on jagged edges where MOF particles may grow by adding more cages.

This is a groundbreaking achievement that is sure to bring unprecedented insights into how these highly porous structures carry out their exceptional functions, and it demonstrates the power of cryo-EM for solving a particularly difficult problem in MOF chemistry,” said Omar Yaghi, a professor at the University of California, Berkeley and a pioneer in this area of chemistry, who was not involved in the study.

The team, led by SLAC/Stanford professors Yi Cui and Wah Chiu, described the study  in the journal Matter.

Source: https://www6.slac.stanford.edu/

Cancer’s ‘Internal Wiring’ Predicts Relapse Risk

The “internal wiring” of breast cancer can predict which women are more likely to survive or relapse, say researchers. The study shows that breast cancer is 11 separate diseases that each has a different risk of coming back. The hope is that the findings, in the journal Nature, could identify people needing closer monitoring and reassure others at low risk of recurrence.

Cancer Research UK said that the work was “incredibly encouraging” but was not yet ready for widespread use. The scientists, at the University of Cambridge and Stanford University, looked in incredible detail at nearly 2,000 women’s breast cancers. They went far beyond considering all breast cancers as a single disease and beyond modern medicine’s way of classifying the tumours.

Doctors currently classify breast cancers based on whether they respond to the hormone oestrogen or targeted therapies like Herceptin. The research team analysed the genetic mutations inside the tumour to create a new way of classifying them.

By following women for 20 years, they are now able to show which types of breast cancer are more likely to come back.  “This is really biology-driven, it’s the molecular wiring of your tumour, said Prof Carlos Caldas. Once and for all we need to stop talking about breast cancer as one disease, it’s a constellation of 11 diseases. “This is a very significant step to more precision-type medicine.”

Source: https://www.bbc.com/

The Ionocraft, Insect-sized Drone That Flies Without Any Moving Parts

Developed by researchers from the University of California, Berkeley, it’s not only described as the smallest flying robot ever made, but one which flies with zero moving parts: meaning no rotors, wings, or similar appendages. Instead, the insect-scale robot relies on atmospheric ion thrusters which allow it to move completely silently.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

To understand how it works, imagine two asymmetric — [such as] a wire and a plate — electrodes,” said Daniel Drew, currently a Postdoctoral Fellow in the Mechanical Engineering department at Stanford University. “When a voltage is applied between the two, the electric field will be stronger in the vicinity of the wire as a function of its geometry. If this field is strong enough, an ambient electron can be pulled in with enough kinetic energy to initiate avalanche breakdown through impact ionization. There’s now a stable plasma, glowing purple in the dark, around the top wire. Generated ions will be ejected from this plasma, drifting in the electric field towards the bottom electrode. Along the way, they collide with neutral air molecules and impart momentum, producing a net thrust.”

Source: https://people.eecs.berkeley.edu/
A
ND
https://www.digitaltrends.com/

Using Graphene, Munitions Go Further, Much Faster

Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.

This discovery coincides with the one of the Army‘s modernization priorities: Long Range Precision Fires. This research could lead to enhanced energetic performance of metal powders as propellant/explosive ingredients in Army’s munitions.

Lauded as a miracle material, graphene is considered the strongest and lightest material in the world. It’s also the most conductive and transparent, and expensive to produce. Its applications are many, extending to electronics by enabling touchscreen laptops, for example, with light-emitting diode, or LCD, or in organic light-emitting diode, or OLED displays and medicine like DNA sequencing. By oxidizing graphite is cheaper to produce en masse. The result: graphene oxide (GO).

Scanning electron micrograph shows the Al/GO composite.

Although GO is a popular two-dimensional material that has attracted intense interest across numerous disciplines and materials applications, this discovery exploits GO as an effective light-weight additive for practical energetic applications using micron-size aluminum powders (µAl), i.e., aluminum particles one millionth of a meter in diameter.

The research team published their findings in the October edition of ACS Nano with collaboration from the RDECOM Research Laboratory, the Army’s corporate research laboratory (ARL), Stanford University, University of Southern California, Massachusetts Institute of Technology and Argonne National Laboratory.

Source: https://www.arl.army.mil/